A035171 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s) + Kronecker(m,p)*p^(-2s))^(-1) for m = -19.
1, 0, 0, 1, 2, 0, 2, 0, 1, 0, 2, 0, 0, 0, 0, 1, 2, 0, 1, 2, 0, 0, 2, 0, 3, 0, 0, 2, 0, 0, 0, 0, 0, 0, 4, 1, 0, 0, 0, 0, 0, 0, 2, 2, 2, 0, 2, 0, 3, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 2, 0, 2, 1, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 1, 4, 0, 0, 2, 1
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
a[n_] := If[n < 0, 0, DivisorSum[n, KroneckerSymbol[-19, #] &]]; Table[a[n], {n, 1, 100}] (* G. C. Greubel, Jul 17 2018 *)
-
PARI
m = -19; direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))
Formula
From Jianing Song, Sep 07 2018: (Start)
a(n) is multiplicative with a(19^e) = 1, a(p^e) = (1 + (-1)^e) / 2 if Kronecker(-19, p) = -1, a(p^e) = e + 1 if Kronecker(-19, p) = 1.
G.f.: Sum_{k>0} Kronecker(-19, k) * x^k / (1 - x^k).
A028641(n) = 2 * a(n) unless n = 0.
(End)
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(19) = 0.720730... . - Amiram Eldar, Oct 11 2022
Comments