cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035171 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s) + Kronecker(m,p)*p^(-2s))^(-1) for m = -19.

Original entry on oeis.org

1, 0, 0, 1, 2, 0, 2, 0, 1, 0, 2, 0, 0, 0, 0, 1, 2, 0, 1, 2, 0, 0, 2, 0, 3, 0, 0, 2, 0, 0, 0, 0, 0, 0, 4, 1, 0, 0, 0, 0, 0, 0, 2, 2, 2, 0, 2, 0, 3, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 2, 0, 2, 1, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 1, 4, 0, 0, 2, 1
Offset: 1

Views

Author

Keywords

Comments

From Jianing Song, Sep 07 2018: (Start)
Half of the number of integer solutions to x^2 + x*y + 5*y^2 = n.
Inverse Moebius transform of A011585. (End)
Coefficients of Dedekind zeta function for the quadratic number field of discriminant -19. See A002324 for formula and Maple code. - N. J. A. Sloane, Mar 22 2022

Crossrefs

Cf. A028641.
Moebius transform gives A011585.
Dedekind zeta functions for imaginary quadratic number fields of discriminants -3, -4, -7, -8, -11, -15, -19, -20 are A002324, A002654, A035182, A002325, A035179, A035175, A035171, A035170, respectively.
Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.

Programs

  • Mathematica
    a[n_] := If[n < 0, 0, DivisorSum[n, KroneckerSymbol[-19, #] &]]; Table[a[n], {n, 1, 100}] (* G. C. Greubel, Jul 17 2018 *)
  • PARI
    m = -19; direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))

Formula

From Jianing Song, Sep 07 2018: (Start)
a(n) is multiplicative with a(19^e) = 1, a(p^e) = (1 + (-1)^e) / 2 if Kronecker(-19, p) = -1, a(p^e) = e + 1 if Kronecker(-19, p) = 1.
G.f.: Sum_{k>0} Kronecker(-19, k) * x^k / (1 - x^k).
A028641(n) = 2 * a(n) unless n = 0.
(End)
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(19) = 0.720730... . - Amiram Eldar, Oct 11 2022