cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035172 a(n) = Sum_{d|n} Kronecker(-18, d).

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 2, 1, 0, 0, 0, 1, 2, 1, 2, 0, 0, 2, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 2, 2, 0, 1, 0, 2, 0, 0, 2, 0, 2, 2, 0, 0, 0, 1, 1, 1, 2, 0, 0, 1, 0, 0, 2, 0, 2, 0, 0, 0, 0, 1, 0, 2, 2, 2, 0, 0, 0, 1, 2, 0, 1, 2, 0, 0, 0, 0, 1, 2, 2, 0, 0, 2, 0, 2, 2, 0, 0, 0, 0, 0, 0, 1, 2, 1, 2, 1, 0, 2, 0, 0, 0
Offset: 1

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
For n nonzero, a(n) is nonzero if and only if n is in A002479.

References

  • Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 81, Eq. (32.51).

Crossrefs

Cf. A002479, A093825, A122071 (odd bisection).

Programs

  • Mathematica
    a[n_] := DivisorSum[n, KroneckerSymbol[-18, #]&]; Array[a, 105] (* Jean-François Alcover, Nov 14 2015 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, kronecker( -18, d)))}
    
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, 1 / (1 - X) / (1 - kronecker( -18, p) * X))[n])}
    
  • PARI
    {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A) * eta(x^4 + A) * eta(x^24 + A) / eta(x + A) / eta(x^8 + A), n))}

Formula

Expansion of q * psi(-q^3) * psi(-q^6) * chi(-q^4) / chi(-q) in powers of q where psi(), chi() are Ramanujan theta functions.
From Michael Somos, Apr 25 2003: (Start)
G.f.: x * Product_{k>0} (1 - x^(3*k)) * (1 - x^(24*k)) * (1 + x^k) / (1 + x^(4*k)).
Euler transform of period 24 sequence [ 1, 0, 0, -1, 1, -1, 1, 0, 0, 0, 1, -2, 1, 0, 0, 0, 1, -1, 1, -1, 0, 0, 1, -2, ...]. (End)
Moebius transform is period 24 sequence [ 1, 0, 0, 0, -1, 0, -1 ,0, 0, 0, 1, 0, -1, 0, 0, 0, 1, 0, 1, 0, 0, 0, -1, 0, ...]. - Michael Somos, Jan 28 2006
From Michael Somos, Aug 04 2006: (Start)
Multiplicative with a(2^e) = a(3^e) = 1, a(p^e) = e+1 if p == 1,3 (mod 8), a(p^e) = (1 + (-1)^e)/2 if p == 5,7 (mod 8).
G.f.: Sum_{k>0} x^k * (1 - x^(4*k)) * (1 - x^(6* k)) / (1 + x^(12*k)). (End)
Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = -18.
G.f.: 1 + Sum{n = -infinity...infinity} (q^n - q^(5n)) / (1 + q^(12n)) (see Berkovich/Yesilyurt). - Ralf Stephan, May 14 2007
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(3*sqrt(2)) = 0.7404804... (A093825). - Amiram Eldar, Nov 16 2023