cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035178 a(n) = Sum_{d|n} Kronecker(-12, d) (= A134667(d)).

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 2, 1, 1, 0, 0, 1, 2, 2, 0, 1, 0, 1, 2, 0, 2, 0, 0, 1, 1, 2, 1, 2, 0, 0, 2, 1, 0, 0, 0, 1, 2, 2, 2, 0, 0, 2, 2, 0, 0, 0, 0, 1, 3, 1, 0, 2, 0, 1, 0, 2, 2, 0, 0, 0, 2, 2, 2, 1, 0, 0, 2, 0, 0, 0, 0, 1, 2, 2, 1, 2, 0, 2, 2, 0, 1, 0, 0, 2, 0, 2, 0, 0, 0, 0, 4, 0, 2, 0, 0, 1, 2, 3, 0, 1, 0, 0, 2, 2, 0
Offset: 1

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q + q^2 + q^3 + q^4 + q^6 + 2*q^7 + q^8 + q^9 + q^12 + 2*q^13 + 2*q^14 + ...
		

References

  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 346.

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(6), 1), 88); B := (A[1] - 1) / 3 + A[2]; B; /* Michael Somos, Aug 04 2015 */
  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ KroneckerSymbol[ -12, d], { d, Divisors[ n]}]]; (* Michael Somos, Jun 24 2011 *)
    a[ n_] := If[ n < 1, 0, Times @@ (Which[ # < 5, 1, Mod[#, 6] == 5, 1 - Mod[#2, 2], True, #2 + 1 ] & @@@ FactorInteger@n)]; (* Michael Somos, Aug 04 2015 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 2, 0, q^(1/2)]^3 / EllipticTheta[ 2, 0, q^(3/2)] - 4) / 12, {q, 0, n}]; (* Michael Somos, Aug 04 2015 *)
    a[n_] := DivisorSum[n, KroneckerSymbol[-12, #]&]; Array[a, 105] (* Jean-François Alcover, Dec 01 2015 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, kronecker( -12, d)))}; /* Michael Somos, Apr 18 2004 */
    
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, 1 / ((1 - X) * (1 - kronecker( -12, p) * X))) [n])}; /* Michael Somos, Jun 24 2011 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^3 + A) * eta(x^2 + A)^6 / (eta(x^6 + A)^2 * eta(x + A)^3) - 1) / 3, n))}; /* Michael Somos, Aug 11 2009 */
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p<5, 1, p%6==5, 1-e%2, 1+e)))}; /* Michael Somos, Aug 04 2015 */
    

Formula

Moebius transform is period 6 sequence [ 1, 0, 0, 0, -1, 0, ...]. - Michael Somos, Feb 14 2006
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = (u1 - u2) * (u1 - u2 - u3 + u6) - (u2 -u6) * (1 + 3*u6). - Michael Somos, May 29 2005
Dirichlet g.f.: zeta(s) * L(chi,s) where chi(n) = Kronecker( -12, n). Sum_{n>0} a(n) / n^s = Product_{p prime} 1 / ((1 - p^-s) * (1 - Kronecker( -12, p) * p^-s)). - Michael Somos, Jun 24 2011
a(n) is multiplicative with a(p^e) = 1 if p=2 or p=3, a(p^e) = 1+e if p == 1 (mod 6), a(p^e) = (1 + (-1)^e)/2 if p == 5 (mod 6).
G.f.: Sum_{k>0} (x^k + x^(3*k)) / (1 + x^(2*k) + x^(4*k)) = Sum_{k>=0} x^(6*k + 1) / (1 - x^(6*k + 1)) - x^(6*k + 5) / (1 - x^(6*k + 5)). - Michael Somos, Feb 14 2006
a(n) = |A093829(n)| = -(-1)^n * A137608(n) = a(2*n) = a(3*n). a(6*n + 1) = A097195(n). a(6*n + 5) = 0.
From Michael Somos, Aug 11 2009: (Start)
3 * a(n) = A107760(n) unless n=0. a(2*n + 1) = A033762(n). a(3*n + 1) = A033687(n). a(4*n + 1) = A112604(n). a(4*n + 3) = A112605(n).
a(8*n + 1) = A112606(n). a(8*n + 3) = A112608(n). a(8*n + 5) = 2 * A112607(n). a(8*n + 7) = 2 * A112608(n). a(12*n + 1) A123884(n). a(12*n + 7) = 2 * A121361(n).
a(24*n + 1) = A131961(n). a(24*n + 7) = 2 * A131962(n). a(24*n + 13) = 2 * A131963(n). a(24*n + 19) = 2 * A131964(n). (End)
Expansion of (psi(q)^3 / psi(q^3) - 1) / 3 in powers of q where psi() is a Ramanujan theta function. - Michael Somos, Aug 04 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(2*sqrt(3)) = 0.906899... (A093766). - Amiram Eldar, Nov 16 2023

Extensions

Definition edited by Michael Somos, Aug 11 2009