A035182 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s) + Kronecker(m,p)*p^(-2s))^(-1) for m = -7.
1, 2, 0, 3, 0, 0, 1, 4, 1, 0, 2, 0, 0, 2, 0, 5, 0, 2, 0, 0, 0, 4, 2, 0, 1, 0, 0, 3, 2, 0, 0, 6, 0, 0, 0, 3, 2, 0, 0, 0, 0, 0, 2, 6, 0, 4, 0, 0, 1, 2, 0, 0, 2, 0, 0, 4, 0, 4, 0, 0, 0, 0, 1, 7, 0, 0, 2, 0, 0, 0, 2, 4, 0, 4, 0, 0, 2, 0, 2, 0, 1, 0, 0, 0, 0, 4, 0, 8, 0, 0, 0, 6, 0, 0, 0, 0, 0, 2, 2, 3, 0, 0, 0, 0, 0
Offset: 1
Examples
G.f. = x + 2*x^2 + 3*x^4 + x^7 + 4*x^8 + x^9 + 2*x^11 + 2*x^14 + 5*x^16 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Magma
A := Basis( ModularForms( Gamma1(14), 1), 106); B
:= (-1 + A[1] + 2*A[2] + 4*A[3] + 6*A[5]) / 2; B; // Michael Somos, Jun 10 2015
-
Mathematica
a[ n_] := If[ n < 1, 0, Sum[ KroneckerSymbol[ -7, d], { d, Divisors[ n]}]]; (* Michael Somos, Jan 23 2014 *) a[ n_] := If[ n < 1, 0, Length @ FindInstance[ n == x^2 + x y + 2 y^2, {x, y}, Integers, 10^9] / 2]; (* Michael Somos, Jan 23 2014 *) a[ n_] := If[ n < 1, 0, DivisorSum[ n, KroneckerSymbol[ -7, #] &]]; (* Michael Somos, Jun 10 2015 *)
-
PARI
{a(n) = my(A, p, e); if( n<0, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k,]; [ !(e%2), 1, e+1] [kronecker( -7, p) + 2]))}; \\ Michael Somos, May 28 2005
-
PARI
{a(n) = if( n<1, 0, qfrep([ 2, 1; 1, 4], n, 1)[n])}; \\ Michael Somos, Jun 05 2005
-
PARI
{a(n) = if( n<1, 0, direuler( p=2, n, 1 / ((1 - X) * (1 - kronecker( -7, p)*X)))[n])}; \\ Michael Somos, Jun 05 2005
Formula
a(n) is multiplicative with a(7^e) = 1, a(p^e) = e + 1 if p == 1, 2, 4 (mod 7), a(p^e) = (1 + (-1)^e) / 2 if p == 3, 5, 6 (mod 7). - Michael Somos, May 28 2005
2 * a(n) = A002652(n) unless n = 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(7) = 1.187410... (A326919). - Amiram Eldar, Oct 11 2022
Comments