cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035186 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 3.

Original entry on oeis.org

1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 2, 1, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 1, 2, 0, 2, 0, 0, 0, 0, 2, 0, 0, 2, 1, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 1, 0, 0, 0, 0, 2, 0, 2, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n < 0, 0, DivisorSum[n, KroneckerSymbol[3, #] &]]; Table[ a[n], {n, 1, 100}] (* G. C. Greubel, Apr 27 2018 *)
  • PARI
    my(m=3); direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))
    
  • PARI
    a(n) = sumdiv(n, d, kronecker(3, d)); \\ Amiram Eldar, Nov 20 2023

Formula

From Amiram Eldar, Oct 17 2022: (Start)
a(n) = Sum_{d|n} Kronecker(3, d).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*log(2+sqrt(3)) / (3*sqrt(3)) = 0.506897... . (End)
Multiplicative with a(3^e) = 1, a(p^e) = (1+(-1)^e)/2 if Kronecker(3, p) = -1 (p is in A038875), and a(p^e) = e+1 if Kronecker(3, p) = 1 (p is in A097933). - Amiram Eldar, Nov 20 2023