cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A327785 Square array read by antidiagonals: A(n,k) = Sum_{d|n} (k/d), (n>=1, k>=0), where (m/n) is the Kronecker symbol.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 0, 3, 1, 1, 1, 1, 1, 2, 1, 1, 0, 2, 1, 0, 4, 1, 1, 1, 0, 1, 0, 0, 2, 1, 1, 2, 1, 1, 2, 0, 2, 4, 1, 1, 1, 2, 1, 1, 2, 0, 1, 3, 1, 1, 2, 0, 3, 2, 0, 2, 0, 1, 4, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 2, 3, 0, 4, 0, 0, 3, 0, 0, 6, 1
Offset: 1

Views

Author

Seiichi Manyama, Sep 25 2019

Keywords

Examples

			Square array begins:
   1, 1, 1, 1, 1, 1, 1, 1, ...
   1, 2, 1, 0, 1, 0, 1, 2, ...
   1, 2, 0, 1, 2, 0, 1, 2, ...
   1, 3, 1, 1, 1, 1, 1, 3, ...
   1, 2, 0, 0, 2, 1, 2, 0, ...
   1, 4, 0, 0, 2, 0, 1, 4, ...
   1, 2, 2, 0, 2, 0, 0, 1, ...
   1, 4, 1, 0, 1, 0, 1, 4, ...
		

Crossrefs

Programs

  • Mathematica
    A[n_, k_] := Sum[KroneckerSymbol[k, d], {d, Divisors[n]}];
    Table[A[n - k, k], {n, 1, 13}, {k, n - 1, 0, -1}] // Flatten (* Jean-François Alcover, Sep 25 2019 *)

A035259 Indices of the nonzero terms in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m= 20.

Original entry on oeis.org

1, 2, 4, 5, 8, 9, 10, 11, 16, 18, 19, 20, 22, 25, 29, 31, 32, 36, 38, 40, 41, 44, 45, 49, 50, 55, 58, 59, 61, 62, 64, 71, 72, 76, 79, 80, 81, 82, 88, 89, 90, 95, 98, 99, 100, 101, 109, 110, 116, 118, 121, 122, 124, 125, 128, 131, 139, 142, 144, 145, 149, 151
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A035202 (the expansion itself).

Programs

  • PARI
    m=20; select(x -> x, direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X)), 1)

Extensions

Edited and extended by Andrey Zabolotskiy, Jul 30 2020
Showing 1-2 of 2 results.