cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035244 Smallest number with exactly n prime substrings.

Original entry on oeis.org

1, 2, 13, 23, 113, 137, 373, 1137, 1733, 1373, 11317, 11373, 13733, 31373, 113173, 131373, 137337, 337397, 1113173, 1137337, 1373373, 2337397, 3733797, 11373137, 11373379, 13733797, 37337397, 111373379, 123733739
Offset: 0

Views

Author

Keywords

Comments

No leading 0's allowed in substrings.
The sequence is well-defined in that for each n the set of numbers with n prime substrings is not empty. Proof by induction: '1' has 0 prime substrings and '2' has 1 prime substring. Let m be a number with n prime substrings. Then 10m+2 is a number with n+1 prime substrings (since m and 10m have identical prime substrings, and '2' is one additional prime substring, but 10m+2 cannot be prime). - Hieronymus Fischer, Aug 26 2012

Examples

			a(4)=113 since 3, 11, 13 and 113 are prime and no smaller number works.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{s = IntegerDigits[n], c = 0, d = {}}, l = Length[s]; t = Flatten[ Table[ Take[s, {i, j}], {i, 1, l}, {j, i, l}], 1]; k = l(l + 1)/2; While[k > 0, If[ t[[k]][[1]] != 0, d = Append[d, FromDigits[ t[[k]] ]]]; k-- ]; Count[ PrimeQ[d], True]]; a = Table[0, {25}]; Do[ b = f[n]; If[ a[[b + 1]] == 0, a[[b + 1]] = n], {n, 1, 15000000}]; a

Formula

a(n) > 10^floor((sqrt(8*n-7)-1)/2) for n > 0. - Hieronymus Fischer, Jun 25 2012
Min_{k>=n} a(k) <= A079397(n-1), n > 0. - Hieronymus Fischer, Aug 26 2012
a(n+1) <= 10*a(n) + 2. - Hieronymus Fischer, Aug 26 2012

Extensions

Edited by Robert G. Wilson v, Feb 25 2003
a(25)-a(40) from Hieronymus Fischer, Jun 25 2012 and Aug 25 2012