A035273 One quarter of deca-factorial numbers.
1, 14, 336, 11424, 502656, 27143424, 1737179136, 128551256064, 10798305509376, 1015040717881344, 105564234659659776, 12034322751201214464, 1492256021148950593536, 199962306833959379533824, 28794572184090150652870656, 4434364116349883200542081024
Offset: 1
Links
Programs
-
GAP
List([1..20], n-> Product([1..n], j-> 10*j-6)/4 ); # G. C. Greubel, Nov 11 2019
-
Magma
[(&*[10*j-6: j in [1..n]])/4: n in [1..20]]; // G. C. Greubel, Nov 11 2019
-
Maple
seq( mul(10*j-6, j=1..n)/4, n=1..20); # G. C. Greubel, Nov 11 2019
-
Mathematica
Table[10^n*Pochhammer[4/10, n]/4, {n,20}] (* G. C. Greubel, Nov 11 2019 *)
-
PARI
vector(20, n, prod(j=1,n, 10*j-6)/4 ) \\ G. C. Greubel, Nov 11 2019
-
Sage
[product( (10*j-6) for j in (1..n))/4 for n in (1..20)] # G. C. Greubel, Nov 11 2019
Formula
4*a(n) = (10*n-6)(!^10) = Product_{j=1..n} (10*j-6).
E.g.f.: (-1 + (1-10*x)^(-2/5))/4.
a(n) = (Pochhammer(4/10,n)*10^n)/4.
Sum_{n>=1} 1/a(n) = 4*(e/10^6)^(1/10)*(Gamma(2/5) - Gamma(2/5, 1/10)). - Amiram Eldar, Dec 22 2022