cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035282 Expansion of zeta function of icosian ring (nonzero terms).

Original entry on oeis.org

1, 5, 6, 10, 24, 21, 40, 30, 31, 60, 64, 50, 84, 120, 60, 50, 144, 120, 124, 85, 144, 200, 160, 126, 91, 180, 240, 240, 155, 204, 220, 300, 410, 320, 156, 264, 280, 210, 360, 300, 304, 384, 420, 170, 400, 504, 360, 300, 364, 384, 250, 400, 504, 960, 424, 720, 310
Offset: 1

Views

Author

Keywords

Comments

Let zetaI(s) be the zeta function of icosian ring: zetaI(s) = zetaQ(tau)(2s)*zetaQ(tau)(2s-1) where zetaQ(tau)(s) is defined in A035187; then zetaI(s) = Sum_{n>=1} a(n)/n^(2s).
Nonzero terms of A078473. - Michel Marcus, Mar 03 2014

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Which[p == 5, (5^(e + 1) - 1)/4, (m = Mod[p, 5]) == 2 || m == 3, If[EvenQ[e], (p^(e + 2) - 1)/(p^2 - 1), 0], m == 1 || m == 4, Sum[(k + 1)*(e - k + 1)*p^k, {k, 0, e}]]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Array[s, 200], # > 0 &] (* Amiram Eldar, May 13 2022 *)