cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035292 Number of similar sublattices of Z^4 of index n^2.

Original entry on oeis.org

1, 3, 8, 3, 12, 24, 16, 3, 41, 36, 24, 24, 28, 48, 96, 3, 36, 123, 40, 36, 128, 72, 48, 24, 97, 84, 176, 48, 60, 288, 64, 3, 192, 108, 192, 123, 76, 120, 224, 36, 84, 384, 88, 72, 492, 144, 96, 24, 177, 291, 288, 84, 108, 528, 288, 48, 320, 180, 120, 288, 124, 192
Offset: 1

Views

Author

Michael Baake (michael.baake(AT)uni-tuebingen.de)

Keywords

Comments

Multiplicative with a(2^p) = 3, a(p^e) = (e+1)*p^e + (e+1)*p^e + (2*(1+(e*p-e-1)*p^e))/((p-1)^2), p > 2. - Christian G. Bower, May 21 2005

Crossrefs

Cf. A045771.

Programs

  • Mathematica
    Clear[ a, f ]; a[ {p_, r_} ] := If[ p == 2, 3, (r + 1)*p^r + (2*(1 - (r + 1)*p^r + r*p^(r + 1)))/(p - 1)^2 ]; f[ m_Integer ] := f[ m ] = Times @@ a /@ FactorInteger[ m ]; (* f[ m ] is number of similar sublattices of Z^4 of index m^2 *)
  • PARI
    fp(p, e) = if (p % 2, (e+1)*p^e + 2*(1-(e+1)*p^e+e*p^(e+1))/(p-1)^2, 1);
    a(n) = {my(f = factor(n)); a045771 = prod(i=1, #f~, fp(f[i, 1], f[i, 2])); if (n % 2, a045771, 3*a045771);} \\ Michel Marcus, Mar 03 2014

Formula

Baake and Moody give Dirichlet generating function.
For odd n, a(n) = A045771(n); for even n, a(n) = 3*A045771(n). - Michel Marcus, Mar 03 2014