cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A385068 G.f.: Sum_{k>=0} x^k * Product_{j=1..4*k} (1 + x^j).

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 9, 12, 16, 20, 26, 33, 41, 52, 65, 81, 99, 121, 147, 177, 214, 255, 304, 362, 429, 507, 596, 700, 820, 959, 1119, 1301, 1510, 1750, 2023, 2335, 2688, 3089, 3546, 4062, 4647, 5306, 6050, 6889, 7833, 8895, 10085, 11422, 12921, 14599, 16477, 18573, 20914
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 16 2025

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Sum[x^k*Product[1 + x^j, {j, 1, 4*k}], {k, 0, nmax}], {x, 0, nmax}], x]
    nmax = 60; p = 1; s = 1; Do[p = Expand[p*(1 + x^(4*k))*(1 + x^(4*k - 1))*(1 + x^(4*k - 2))*(1 + x^(4*k - 3))]; p = Take[p, Min[nmax + 1, Exponent[p, x] + 1, Length[p]]]; s += p*x^k;, {k, 1, nmax}]; CoefficientList[Series[s, {x, 0, nmax}], x]

Formula

a(n) ~ Gamma(1/4) * 3^(1/8) * exp(Pi*sqrt(n/3)) / (2^(13/4) * Pi^(3/4) * n^(3/8)).

A363067 Number of partitions p of n such that (1/4)*max(p) is a part of p.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 10, 13, 18, 23, 31, 39, 51, 64, 81, 102, 128, 159, 198, 245, 304, 374, 460, 563, 689, 841, 1023, 1242, 1505, 1819, 2195, 2642, 3173, 3804, 4551, 5435, 6477, 7707, 9151, 10850, 12843, 15175, 17902, 21089, 24802, 29132, 34164, 40012, 46796, 54663, 63766
Offset: 0

Views

Author

Seiichi Manyama, May 16 2023

Keywords

Examples

			a(8) = 3 counts these partitions:  431, 4211, 41111.
		

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Sum[x^(5*k)/Product[1 - x^j, {j, 1, 4*k}], {k, 0, nmax}], {x, 0, nmax}], x]  (* Vaclav Kotesovec, Jun 18 2025 *)
    nmax = 60; p=1; s=1; Do[p=Expand[p*(1-x^(4*k))*(1-x^(4*k-1))*(1-x^(4*k-2))*(1-x^(4*k-3))]; p=Take[p, Min[nmax+1, Exponent[p, x]+1, Length[p]]]; s+=x^(5*k)/p; , {k, 1, nmax}]; CoefficientList[Series[s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 18 2025 *)
  • PARI
    a(n) = sum(k=0, n\5, #partitions(n-5*k, 4*k));

Formula

G.f.: Sum_{k>=0} x^(5*k)/Product_{j=1..4*k} (1-x^j).
a(n) ~ Gamma(1/4) * Pi^(1/4) * exp(Pi*sqrt(2*n/3)) / (2^(49/8) * 3^(5/8) * n^(9/8)). - Vaclav Kotesovec, Jun 19 2025

A385090 G.f.: Sum_{k>=0} x^k * Product_{j=1..4*k} (1 + x^j)/(1 - x^j).

Original entry on oeis.org

1, 1, 3, 7, 15, 29, 51, 87, 143, 227, 353, 537, 803, 1185, 1727, 2489, 3551, 5021, 7039, 9791, 13521, 18541, 25261, 34207, 46051, 61655, 82113, 108815, 143517, 188433, 246343, 320725, 415931, 537377, 691791, 887517, 1134863, 1446549, 1838235, 2329147, 2942849, 3708165
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 17 2025

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[x^k*Product[(1+x^j)/(1-x^j), {j, 1, 4*k}], {k, 0, nmax}], {x, 0, nmax}], x]
    nmax = 50; p = 1; q = 1; s = 1; Do[p = Expand[p*(1 - x^(4*k))*(1 - x^(4*k - 1))*(1 - x^(4*k - 2))*(1 - x^(4*k - 3))]; p = Take[p, Min[nmax + 1, Exponent[p, x] + 1, Length[p]]]; q = Expand[q*(1 + x^(4*k))*(1 + x^(4*k - 1))*(1 + x^(4*k - 2))*(1 + x^(4*k - 3))]; q = Take[q, Min[nmax + 1, Exponent[q, x] + 1, Length[q]]]; s += x^k*q/p;, {k, 1, nmax}]; CoefficientList[Series[s, {x, 0, nmax}], x]

Formula

a(n) ~ Gamma(1/4) * exp(Pi*sqrt(n)) / (2^(9/2) * Pi^(3/4) * n^(5/8)).
Showing 1-3 of 3 results.