cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035337 Third column of Wythoff array.

Original entry on oeis.org

3, 11, 16, 24, 32, 37, 45, 50, 58, 66, 71, 79, 87, 92, 100, 105, 113, 121, 126, 134, 139, 147, 155, 160, 168, 176, 181, 189, 194, 202, 210, 215, 223, 231, 236, 244, 249, 257, 265, 270, 278, 283, 291, 299, 304, 312
Offset: 0

Views

Author

Keywords

Comments

Also, positions of 3's in A139764, the smallest term in Zeckendorf representation of n. - John W. Layman, Aug 25 2011
The formula a(n) = 3*A003622(n)-n+1 = 3AA(n)-n+1 conjectured by Layman below is correct, since it is well known that AA(n)+1 = B(n) = A(n)+n, where B = A001950, and so 3AA(n)-n+1 = 3B(n)-n-2 = 3A(n)+2n-2. - Michel Dekking, Aug 31 2017
From Amiram Eldar, Mar 21 2022: (Start)
Numbers k for which the Zeckendorf representation A014417(k) ends with 1, 0, 0.
The asymptotic density of this sequence is 1/phi^4 = 2/(7+3*sqrt(5)), where phi is the golden ratio (A001622). (End)

Crossrefs

Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.

Programs

  • Maple
    t := (1+sqrt(5))/2 ; [ seq(3*floor((n+1)*t)+2*n,n=0..80) ];
  • Mathematica
    Table[3 Floor[n GoldenRatio] + 2 n - 2, {n, 46}] (* Michael De Vlieger, Aug 31 2017 *)
  • PARI
    a(n) = 2*n + 3*floor((1+sqrt(5))*(n+1)/2); \\ Altug Alkan, Sep 18 2017
  • Python
    from sympy import floor
    from mpmath import phi
    def a(n): return 3*floor((n + 1)*phi) + 2*n # Indranil Ghosh, Jun 10 2017
    
  • Python
    from math import isqrt
    def A035337(n): return 3*(n+isqrt(5*n**2)>>1)+(n-1<<1) # Chai Wah Wu, Aug 11 2022
    

Formula

a(n) = F(4)A(n)+F(3)(n-1) = 3A(n)+2n-2, where A = A000201 and F = A000045. - Michel Dekking, Aug 31 2017
It appears that a(n) = 3*A003622(n) - n + 1. - John W. Layman, Aug 25 2011