cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035371 Number of partitions of n into parts 5k+1 or 5k+2.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 5, 6, 8, 9, 11, 13, 17, 20, 25, 28, 34, 39, 48, 55, 65, 74, 87, 100, 118, 134, 155, 175, 203, 230, 265, 298, 340, 383, 437, 492, 558, 624, 705, 789, 890, 993, 1115, 1241, 1391, 1548, 1730, 1919, 2139, 2370, 2638, 2919, 3239, 3576, 3962, 4372, 4836
Offset: 0

Views

Author

Keywords

Examples

			1 + x + 2*x^2 + 2*x^3 + 3*x^4 + 3*x^5 + 5*x^6 + 6*x^7 + 8*x^8 + 9*x^9 + ...
		

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1/((1 - x^(5k+1))*(1 - x^(5k+2))), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2015 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / prod( k=1, (n+4)\5, (1 - x^(5*k - 4)) * (1 - x^(5*k - 3)), 1 + x * O(x^n)), n))} /* Michael Somos, Feb 09 2012 */

Formula

Euler transform of period 5 sequence [ 1, 1, 0, 0, 0, ...]. - Michael Somos, Feb 09 2012
a(n) ~ exp(2*Pi*sqrt(n/15)) * Gamma(1/5) * Gamma(2/5) / (4 * 3^(1/20) * 5^(9/20) * Pi^(7/5) * n^(11/20)). - Vaclav Kotesovec, Aug 27 2015