cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035457 Number of partitions of n into parts of the form 4*k + 2.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 8, 0, 10, 0, 12, 0, 15, 0, 18, 0, 22, 0, 27, 0, 32, 0, 38, 0, 46, 0, 54, 0, 64, 0, 76, 0, 89, 0, 104, 0, 122, 0, 142, 0, 165, 0, 192, 0, 222, 0, 256, 0, 296, 0, 340, 0, 390, 0, 448, 0, 512, 0, 585, 0, 668, 0, 760, 0, 864, 0, 982, 0
Offset: 0

Views

Author

Keywords

Comments

Also number of partitions of n into distinct even parts. Example: a(10)=3 because we have [10],[8,2] and [6,4]. - Emeric Deutsch, Feb 22 2006
Also number of partitions of n into odd parts, each part occurring an even number of times. Example: a(10)=3 because we have [5,5], [3,3,1,1,1,1] and [1,1,1,1,1,1,1,1,1,1]. - Emeric Deutsch, Apr 08 2006

Examples

			a(10)=3 because we have [10], [6,2,2] and [2,2,2,2,2].
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 288-289.

Crossrefs

Programs

  • Maple
    g:=product(1+x^(2*j),j=1..45): gser:=series(g,x=0,85): seq(coeff(gser,x,n),n=0..79); # Emeric Deutsch, Feb 22 2006; a(0) added by Georg Fischer, Dec 10 2020
  • Mathematica
    nn=80;CoefficientList[Series[Product[1+ x^(2i),{i,1,nn}],{x,0,nn}],x] (* Geoffrey Critzer, Jun 20 2014 *)
    nmax = 50; kmax = nmax/4; s = Range[0, kmax]*4 + 2;
    Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Aug 03 2020 *)
  • PARI
    N=166;  S=2+sqrtint(N);  x='x+O('x^N);
    gf=sum(n=0, S, x^(n^2+n)/prod(k=1,n, 1-x^(2*k)) );
    Vec(gf)
    \\ Joerg Arndt, Feb 18 2014

Formula

G.f.: 1/Product_{n>=0} (1 - x^(4*n+2)).
G.f.: 1/Product_{j>=0} (1 - x^(8*j+2))*(1 - x^(8*j+6)).
G.f.: Product_{j>=1} (1 + x^(2*j)). - Emeric Deutsch, Feb 22 2006
a(2*n-1) = 0, a(2*n) = A000009(n). a(n) = A116675(n,0). - Emeric Deutsch, Feb 22 2006
G.f.: Sum_{n>=1} (x^(n*(n+1)) / Product_{k=1..n} (1 - x^(2*k))). - Joerg Arndt, Mar 10 2011
If n is even, a(n) ~ exp(Pi*sqrt(n/6)) / (2^(5/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Feb 26 2015
a(4*n) = A035294(n) and a(4*n+2) = A078408(n). - George Beck, Aug 19 2017

Extensions

More terms from Emeric Deutsch, Feb 22 2006
Description simplified by Joerg Arndt, Jun 24 2009
a(0)=1 prepended by Joerg Arndt, Mar 11 2011