A035457 Number of partitions of n into parts of the form 4*k + 2.
1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 8, 0, 10, 0, 12, 0, 15, 0, 18, 0, 22, 0, 27, 0, 32, 0, 38, 0, 46, 0, 54, 0, 64, 0, 76, 0, 89, 0, 104, 0, 122, 0, 142, 0, 165, 0, 192, 0, 222, 0, 256, 0, 296, 0, 340, 0, 390, 0, 448, 0, 512, 0, 585, 0, 668, 0, 760, 0, 864, 0, 982, 0
Offset: 0
Keywords
Examples
a(10)=3 because we have [10], [6,2,2] and [2,2,2,2,2].
References
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 288-289.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Programs
-
Maple
g:=product(1+x^(2*j),j=1..45): gser:=series(g,x=0,85): seq(coeff(gser,x,n),n=0..79); # Emeric Deutsch, Feb 22 2006; a(0) added by Georg Fischer, Dec 10 2020
-
Mathematica
nn=80;CoefficientList[Series[Product[1+ x^(2i),{i,1,nn}],{x,0,nn}],x] (* Geoffrey Critzer, Jun 20 2014 *) nmax = 50; kmax = nmax/4; s = Range[0, kmax]*4 + 2; Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Aug 03 2020 *)
-
PARI
N=166; S=2+sqrtint(N); x='x+O('x^N); gf=sum(n=0, S, x^(n^2+n)/prod(k=1,n, 1-x^(2*k)) ); Vec(gf) \\ Joerg Arndt, Feb 18 2014
Formula
G.f.: 1/Product_{n>=0} (1 - x^(4*n+2)).
G.f.: 1/Product_{j>=0} (1 - x^(8*j+2))*(1 - x^(8*j+6)).
G.f.: Product_{j>=1} (1 + x^(2*j)). - Emeric Deutsch, Feb 22 2006
G.f.: Sum_{n>=1} (x^(n*(n+1)) / Product_{k=1..n} (1 - x^(2*k))). - Joerg Arndt, Mar 10 2011
If n is even, a(n) ~ exp(Pi*sqrt(n/6)) / (2^(5/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Feb 26 2015
Extensions
More terms from Emeric Deutsch, Feb 22 2006
Description simplified by Joerg Arndt, Jun 24 2009
a(0)=1 prepended by Joerg Arndt, Mar 11 2011
Comments