A035468 Number of partitions of n into parts 8k+6 or 8k+7.
0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 2, 1, 0, 0, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 5, 4, 4, 2, 2, 3, 5, 7, 8, 7, 5, 4, 5, 7, 12, 12, 13, 11, 9, 8, 12, 16, 19, 21, 20, 17, 16, 17, 24, 28, 33, 33, 33, 28, 29, 34, 41, 48, 54, 53, 50, 48, 52, 58, 72, 79, 85, 83, 81, 80, 88, 100, 116, 127
Offset: 1
Keywords
Links
- Robert Price, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
nmax = 100; Rest[CoefficientList[Series[Product[1/((1 - x^(8k+6))*(1 - x^(8k+7))), {k, 0, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Aug 27 2015 *) nmax = 60; kmax = nmax/8; s = Flatten[{Range[0, kmax]*8 + 6}~Join~{Range[0, kmax]*8 + 7}]; Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 1, nmax}] (* Robert Price, Aug 04 2020 *)
Formula
a(n) ~ exp(Pi*sqrt(n/6)) * Gamma(3/4) * Gamma(7/8) / (2^(29/16) * 3^(9/16) * Pi^(3/8) * n^(17/16)). - Vaclav Kotesovec, Aug 27 2015
Comments