cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035468 Number of partitions of n into parts 8k+6 or 8k+7.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 2, 1, 0, 0, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 5, 4, 4, 2, 2, 3, 5, 7, 8, 7, 5, 4, 5, 7, 12, 12, 13, 11, 9, 8, 12, 16, 19, 21, 20, 17, 16, 17, 24, 28, 33, 33, 33, 28, 29, 34, 41, 48, 54, 53, 50, 48, 52, 58, 72, 79, 85, 83, 81, 80, 88, 100, 116, 127
Offset: 1

Views

Author

Keywords

Comments

In general, if a > 0, b > 0, c > 0, d > 0, gcd(a,b) = 1, gcd(c,d) = 1 and g.f. = Product_{k>=0} 1/((1 - x^(a*k+b)) * (1 - x^(c*k+d))), then a(n) ~ Gamma(b/a) * Gamma(d/c) * a^((2*b/a - 2*d/c - 1)/4) * c^((2*d/c - 2*b/a - 1)/4) * (a+c)^((2*b/a + 2*d/c - 1)/4) * Pi^(b/a + d/c - 2) * exp(Pi*sqrt(2*(1/a + 1/c)*n/3)) / (2^((2*b/a + 2*d/c + 7)/4) * 3^((2*b/a + 2*d/c - 1)/4) * n^((1 + 2*b/a + 2*d/c)/4)). - Vaclav Kotesovec, Aug 27 2015

Programs

  • Mathematica
    nmax = 100; Rest[CoefficientList[Series[Product[1/((1 - x^(8k+6))*(1 - x^(8k+7))), {k, 0, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Aug 27 2015 *)
    nmax = 60; kmax = nmax/8;
    s = Flatten[{Range[0, kmax]*8 + 6}~Join~{Range[0, kmax]*8 + 7}];
    Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 1, nmax}] (* Robert Price, Aug 04 2020 *)

Formula

a(n) ~ exp(Pi*sqrt(n/6)) * Gamma(3/4) * Gamma(7/8) / (2^(29/16) * 3^(9/16) * Pi^(3/8) * n^(17/16)). - Vaclav Kotesovec, Aug 27 2015