cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 83 results. Next

A035618 Number of partitions of n into parts 3k and 3k+1 with at least one part of each type.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 4, 4, 4, 10, 11, 11, 22, 25, 26, 44, 51, 54, 84, 98, 105, 152, 178, 193, 266, 312, 341, 452, 528, 581, 749, 873, 964, 1214, 1409, 1561, 1930, 2234, 2479, 3018, 3478, 3866, 4647, 5339, 5937, 7061, 8081, 8991, 10594, 12089, 13447, 15721
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 52; kmax = nmax/3; s1 = Range[1, nmax/3]*3; s2 = Range[0, nmax/3]*3 + 1;
    Table[Count[IntegerPartitions[n, All, s1~Join~s2],
    x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* Robert Price, Aug 06 2020 *)
    nmax = 52; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(3 k)), {k, 1, nmax}])*(-1 + 1/Product[(1 - x^(3 k + 1)), {k, 0, nmax}]), {x, 0, nmax}], x]  (* Robert Price, Aug 16 2020*)

Formula

G.f.: (-1 + 1/Product_{k>=1} (1 - x^(3 k)))*(-1 + 1/Product_{k>=0} (1 - x^(3 k + 1))). - Robert Price, Aug 16 2020

A035699 Number of partitions of n into parts 8k+6 and 8k+7 with at least one part of each type.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 2, 0, 0, 0, 1, 1, 3, 2, 3, 0, 1, 1, 3, 3, 6, 4, 5, 1, 3, 3, 7, 7, 11, 7, 8, 3, 7, 8, 15, 13, 19, 12, 13, 8, 16, 17, 27, 24, 30, 20, 23, 18, 32, 32, 46, 40, 48, 34, 41, 37, 56, 57, 76, 66, 76, 58, 71, 67, 97, 96, 122, 105, 119
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 83; s1 = Range[0, nmax/8]*8 + 6; s2 = Range[0, nmax/8]*8 + 7;
    Table[Count[IntegerPartitions[n, All, s1~Join~s2],
    x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* Robert Price, Aug 16 2020 *)
    nmax = 83; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(8 k + 6)), {k, 0, nmax}])*(-1 + 1/Product[(1 - x^(8 k + 7)), {k, 0, nmax}]), {x, 0, nmax}], x] (* Robert Price, Aug 16 2020*)

Formula

G.f.: (-1 + 1/Product_{k>=0} (1 - x^(8 k + 6)))*(-1 + 1/Product_{k>=0} (1 - x^(8 k + 7))). - Robert Price, Aug 16 2020

A035462 Number of partitions of n into parts 4k-1.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 1, 2, 3, 2, 2, 4, 4, 3, 4, 5, 5, 5, 6, 7, 8, 7, 8, 11, 10, 10, 13, 14, 14, 15, 17, 19, 20, 20, 24, 27, 26, 28, 33, 35, 35, 39, 44, 46, 48, 52, 58, 62, 63, 69, 78, 80, 83, 93, 100, 104, 111, 120, 130, 137, 143, 156, 169, 175, 185, 203
Offset: 0

Views

Author

Keywords

Comments

Also, number of partitions into parts 8k+3 or 8k+7.
Also number of partitions of n such that 2k-1 and 2k occur with the same multiplicity. Example: a(18)=3 because we have [8,7,2,1],[6,5,4,3] and [2,2,2,2,2,2,1,1,1,1,1,1]. It is easy to find a bijection between these partitions and those described in the definition. - Emeric Deutsch, Apr 05 2006

Examples

			a(18)=3 because we have [15,3],[11,7] and [3,3,3,3,3,3].
		

Crossrefs

Cf. similar sequences of number of partitions of n into parts congruent to m-1 mod m: A000009 (m=2), A035386 (m=3), this sequence (m=4), A109700 (m=5), A109702 (m=6), A109708 (m=7).

Programs

  • Maple
    g:=1/product(1-x^(4*i-1),i=1..50): gser:=series(g,x=0,80): seq(coeff(gser,x,n),n=1..75); # Emeric Deutsch, Apr 05 2006
  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1/(1-x^(4*k+3)),{k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 26 2015 *)
    nmax = 50; kmax = nmax/4; s = Range[0, kmax]*4 - 1;
    Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Aug 04 2020 *)

Formula

G.f.: 1/Product_{j>=1} (1 - x^(4*j-1)). - Emeric Deutsch, Apr 05 2006
G.f.: Sum_{n>=0} (x^(3*n) / Product_{k=1..n} (1 - x^(4*k))) = 1 + Sum_{n>=0} (x^(4*n+3) / Product_{k>=n} (1 - x^(4*k+3))) = 1 + Sum_{n>=0} (x^(4*n+3) / Product_{k=0..n} (1 - x^(4*k+3))). - Joerg Arndt, Apr 08 2011
a(n) ~ Pi^(3/4) * exp(Pi*sqrt(n/6)) / (Gamma(1/4) * 2^(13/8) * 3^(3/8) * n^(7/8)) * (1 + (Pi/(96*sqrt(6)) - 21*sqrt(3/2)/(16*Pi)) / sqrt(n)). - Vaclav Kotesovec, Feb 26 2015, extended Jan 24 2017
a(n) = (1/n)*Sum_{k=1..n} A050452(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 20 2017
From Peter Bala, Feb 02 2021: (Start)
G.f.: A(x) = Sum_{n >= 0} x^(n*(4*n-1))/Product_{k = 1..n} ( (1 - x^(4*k))*(1 - x^(4*k-1)) ). (Set z = x^3 and q = x^4 in Mc Laughlin et al., Section 1.3, Entry 7.)
Similarly, A(x) = Sum_{n >= 0} x^(n*(4*n+3))/( (1 - x^3)*Product_{k = 1..n} ((1 - x^(4*k))*(1 - x^(4*k+3))) ). (End)

Extensions

Offset changed by N. J. A. Sloane, Apr 11 2010

A035619 Number of partitions of n into parts 3k and 3k+2 with at least one part of each type.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 3, 1, 3, 7, 3, 8, 14, 8, 17, 26, 18, 33, 47, 36, 61, 81, 68, 106, 137, 121, 181, 224, 209, 296, 362, 347, 478, 570, 565, 750, 890, 894, 1166, 1360, 1396, 1774, 2062, 2134, 2677, 3076, 3228, 3973, 4555, 4804, 5854, 6657, 7085, 8513
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 55; s1 = Range[1, nmax/3]*3; s2 = Range[0, nmax/3]*3 + 2;
    Table[Count[IntegerPartitions[n, All, s1~Join~s2],
    x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* Robert Price, Aug 06 2020 *)
    nmax = 55; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(3 k)), {k, 1, nmax}])*(-1 + 1/Product[(1 - x^(3 k + 2)), {k, 0, nmax}]), {x, 0, nmax}], x]  (* Robert Price, Aug 16 2020*)

Formula

G.f.: (-1 + 1/Product_{k>=1} (1 - x^(3 k)))*(-1 + 1/Product_{k>=0} (1 - x^(3 k + 2))). - Robert Price, Aug 16 2020

A035620 Number of partitions of n into parts 3k+1 and 3k+2 with at least one part of each type.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 5, 7, 11, 14, 19, 26, 33, 43, 55, 70, 88, 111, 137, 170, 208, 256, 311, 378, 456, 551, 658, 790, 940, 1119, 1325, 1570, 1847, 2179, 2554, 2996, 3499, 4088, 4753, 5533, 6414, 7436, 8593, 9931, 11439, 13180, 15140, 17391, 19926, 22827
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; s1 = Range[0, nmax/3]*3 + 1; s2 = Range[0, nmax/3]*3 + 2;
    Table[Count[IntegerPartitions[n, All, s1~Join~s2],
    x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* Robert Price, Aug 06 2020 *)
    nmax = 50; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(3 k + 1)), {k, 0, nmax}])*(-1 + 1/Product[(1 - x^(3 k + 2)), {k, 0, nmax}]), {x, 0, nmax}], x]  (* Robert Price, Aug 16 2020*)

Formula

G.f.: (-1 + 1/Product_{k>=0} (1 - x^(3 k + 1)))*(-1 + 1/Product_{k>=0} (1 - x^(3 k + 2))). - Robert Price, Aug 16 2020

A035621 Number of partitions of n into parts 4k and 4k+1 with at least one part of each type.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 4, 4, 4, 4, 10, 11, 11, 11, 22, 25, 26, 26, 44, 51, 54, 55, 84, 98, 105, 108, 153, 178, 193, 200, 269, 313, 341, 356, 459, 531, 582, 611, 764, 880, 967, 1021, 1244, 1424, 1568, 1662, 1988, 2264, 2494, 2653, 3122, 3536, 3896, 4155
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 56; s1 = Range[1, nmax/4]*4; s2 = Range[0, nmax/4]*4 + 1;
    Table[Count[IntegerPartitions[n, All, s1~Join~s2],
    x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* Robert Price, Aug 06 2020 *)
    nmax = 56; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(4 k)), {k, 1, nmax}])*(-1 + 1/Product[(1 - x^(4 k + 1)), {k, 0, nmax}]), {x, 0, nmax}], x]  (* Robert Price, Aug 16 2020*)

Formula

G.f.: (-1 + 1/Product_{k>=1} (1 - x^(4 k)))*(-1 + 1/Product_{k>=0} (1 - x^(4 k + 1))). - Robert Price, Aug 16 2020

A035623 Number of partitions of n into parts 4k and 4k+3 with at least one part of each type.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 3, 0, 1, 3, 6, 1, 3, 7, 12, 3, 7, 15, 21, 7, 16, 28, 36, 16, 31, 50, 60, 32, 57, 85, 98, 60, 100, 141, 157, 107, 169, 226, 248, 184, 276, 358, 385, 305, 442, 553, 591, 495, 691, 845, 896, 782, 1063, 1270, 1343, 1216, 1608, 1890, 1993
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    N:= 100:
    P:= (-1 + 1/mul(1-x^(4*k+3), k=0..(N-3)/4))*(-1 + 1/mul(1-x^(4*k), k=1..N/4)):
    S:= series(P,x,N+1):
    seq(coeff(S,x,j),j=1..N); # Robert Israel, Feb 23 2016
  • Mathematica
    nmax = 63; s1 = Range[1, nmax/4]*4; s2 = Range[0, nmax/4]*4 + 3;
    Table[Count[IntegerPartitions[n, All, s1~Join~s2],
    x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* Robert Price, Aug 06 2020 *)
    nmax = 63; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(4 k + 3)), {k, 0, nmax}])*(-1 + 1/Product[(1 - x^(4 k)), {k, 1, nmax}]), {x, 0, nmax}], x]  (* Robert Price, Aug 06 2020 *)

Formula

G.f.: (-1 + 1/Product_{k>=0} (1-x^(4k+3)))*(-1 + 1/Product_{k>=1} (1-x^(4k))). - Robert Israel, Feb 23 2016
a(n) ~ exp(Pi*sqrt(n/3)) * Pi^(3/4) / (2^(5/4) * 3^(5/8) * Gamma(1/4) * n^(9/8)). - Vaclav Kotesovec, May 26 2018

A035626 Number of partitions of n into parts 4k+2 and 4k+3 with at least one part of each type.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 1, 3, 1, 4, 3, 7, 4, 10, 8, 15, 11, 21, 18, 30, 24, 42, 37, 56, 50, 78, 70, 102, 95, 137, 129, 179, 171, 236, 227, 303, 297, 395, 386, 502, 501, 643, 641, 814, 820, 1030, 1041, 1291, 1317, 1622, 1652, 2018, 2075, 2509, 2582, 3107, 3212, 3834
Offset: 1

Views

Author

Keywords

Crossrefs

Bisection of A035695 (even part).

Programs

  • Mathematica
    nmax = 59; s1 = Range[0, nmax/4]*4 + 2; s2 = Range[0, nmax/4]*4 + 3;
    Table[Count[IntegerPartitions[n, All, s1~Join~s2],
    x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* Robert Price, Aug 06 2020 *)
    nmax = 59; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(4 k + 3)), {k, 0, nmax}])*(-1 + 1/Product[(1 - x^(4 k + 2)), {k, 0, nmax}]), {x, 0, nmax}], x]  (* Robert Price, Aug 16 2020 *)

Formula

G.f.: (-1 + 1/Product_{k>=0} (1 - x^(4 k + 2)))*(-1 + 1/Product_{k>=0} (1 - x^(4 k + 3))). - Robert Price, Aug 16 2020

A035672 Number of partitions of n into parts 8k and 8k+1 with at least one part of each type.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 4, 4, 4, 4, 4, 10, 11, 11, 11, 11, 11, 11, 11, 22, 25, 26, 26, 26, 26, 26, 26, 44, 51, 54, 55, 55, 55, 55, 55, 84, 98, 105, 108, 109, 109, 109, 109, 153, 178, 193, 200, 203, 204, 204, 204, 270, 313, 341, 356, 363, 366
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 70; s1 = Range[1, nmax/8]*8; s2 = Range[0, nmax/8]*8 + 1;
    Table[Count[IntegerPartitions[n, All, s1~Join~s2],
    x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* Robert Price, Aug 12 2020 *)
    nmax = 70; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(8 k)), {k, 1, nmax}])*(-1 + 1/Product[(1 - x^(8 k + 1)), {k, 0, nmax}]), {x, 0, nmax}], x]  (* Robert Price, Aug 12 2020 *)

Formula

G.f.: (-1 + 1/Product_{k>=0} (1 - x^(8*k + 1)))*(-1 + 1/Product_{k>=1} (1 - x^(8*k))). - Robert Price, Aug 12 2020

A035674 Number of partitions of n into parts 8k and 8k+3 with at least one part of each type.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 3, 1, 0, 3, 1, 0, 3, 1, 6, 3, 1, 7, 3, 1, 7, 3, 12, 7, 3, 15, 7, 3, 16, 7, 21, 16, 7, 28, 16, 7, 31, 16, 36, 32, 16, 50, 32, 16, 57, 32, 60, 60, 32, 85, 61, 32, 100, 61, 98, 107, 61, 141, 110, 61, 169, 111, 157, 184, 111, 226
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 78; s1 = Range[1, nmax/8]*8; s2 = Range[0, nmax/8]*8 + 3;
    Table[Count[IntegerPartitions[n, All, s1~Join~s2],
    x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* Robert Price, Aug 12 2020 *)
    nmax = 78; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(8 k)), {k, 1, nmax}])*(-1 + 1/Product[(1 - x^(8 k + 3)), {k, 0, nmax}]), {x, 0, nmax}], x]  (* Robert Price, Aug 12 2020 *)

Formula

G.f.: (-1 + 1/Product_{k>=0} (1 - x^(8*k + 3)))*(-1 + 1/Product_{k>=1} (1 - x^(8*k))). - Robert Price, Aug 12 2020
Showing 1-10 of 83 results. Next