cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A035622 Number of partitions of n into parts 4k and 4k+2 with at least one part of each type.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 4, 0, 4, 0, 10, 0, 11, 0, 22, 0, 25, 0, 44, 0, 51, 0, 83, 0, 98, 0, 149, 0, 177, 0, 259, 0, 309, 0, 436, 0, 521, 0, 716, 0, 857, 0, 1151, 0, 1376, 0, 1816, 0, 2170, 0, 2818, 0, 3361, 0, 4309, 0, 5132, 0, 6502, 0, 7728, 0, 9695, 0, 11501, 0, 14298
Offset: 0

Views

Author

Keywords

Crossrefs

Bisections give: A006477 (even part), A000004 (odd part).

Programs

  • Mathematica
    nmax = 70; s1 = Range[1, nmax/4]*4; s2 = Range[0, nmax/4]*4 + 2;
    Table[Count[IntegerPartitions[n, All, s1~Join~s2],
    x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 0, nmax}] (* Robert Price, Aug 06 2020 *)
    nmax = 70; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(4 k)), {k, 1, nmax}])*(-1 + 1/Product[(1 - x^(4 k + 2)), {k, 0, nmax}]), {x, 0, nmax}], x]  (* Robert Price, Aug 16 2020*)

Formula

G.f.: (-1 + 1/Product_{k>=1} (1 - x^(4 k)))*(-1 + 1/Product_{k>=0} (1 - x^(4 k + 2))). - Robert Price, Aug 16 2020

A035624 Number of partitions of n into parts 4k+1 and 4k+2 with at least one part of each type.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 5, 5, 8, 8, 14, 15, 22, 23, 34, 37, 51, 54, 74, 81, 107, 116, 150, 165, 210, 229, 287, 316, 392, 430, 526, 580, 704, 774, 929, 1024, 1223, 1347, 1593, 1756, 2068, 2278, 2663, 2933, 3416, 3762, 4355, 4793, 5529, 6084, 6985, 7680, 8789
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 53; s1 = Range[0, nmax/4]*4 + 1; s2 = Range[0, nmax/4]*4 + 2;
    Table[Count[IntegerPartitions[n, All, s1~Join~s2],
    x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* Robert Price, Aug 06 2020 *)
    nmax = 53; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(4 k + 2)), {k, 0, nmax}])*(-1 + 1/Product[(1 - x^(4 k + 1)), {k, 0, nmax}]), {x, 0, nmax}], x]  (* Robert Price, Aug 16 2020 *)

Formula

G.f.: (-1 + 1/Product_{k>=0} (1 - x^(4 k + 1)))*(-1 + 1/Product_{k>=0} (1 - x^(4 k + 2))). - Robert Price, Aug 16 2020

A035677 Number of partitions of n into parts 8k and 8k + 6 with at least one part of each type.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 3, 0, 0, 0, 1, 0, 3, 0, 6, 0, 1, 0, 3, 0, 7, 0, 12, 0, 3, 0, 7, 0, 15, 0, 21, 0, 7, 0, 16, 0, 28, 0, 36, 0, 16, 0, 31, 0, 50, 0, 60, 0, 32, 0, 57, 0, 85, 0, 98, 0, 60, 0, 100, 0, 141, 0, 157, 0, 107, 0, 169, 0, 226, 0, 248, 0
Offset: 1

Views

Author

Keywords

Crossrefs

Bisections give: A035623 (even part), A000004 (odd part).

Programs

  • Maple
    b:= proc(n, i, t, s) option remember; `if`(n=0, t*s, `if`(i<1, 0,
           b(n, i-1, t, s)+(h-> `if`(h in {0, 3}, add(b(n-i*j, i-1,
          `if`(h=0, 1, t), `if`(h=3, 1, s)), j=1..n/i), 0))(irem(i, 4))))
        end:
    a:= n-> `if`(n::odd, 0, b(n/2$2, 0$2)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Aug 17 2020
  • Mathematica
    nmax = 87; s1 = Range[1, nmax/8]*8; s2 = Range[0, nmax/8]*8 + 6;
    Table[Count[IntegerPartitions[n, All, s1~Join~s2],
    x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* Robert Price, Aug 13 2020 *)
    nmax = 87; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(8 k)), {k, 1, nmax}])*(-1 + 1/Product[(1 - x^(8 k + 6)), {k, 0, nmax}]), {x, 0, nmax}], x]  (* Robert Price, Aug 13 2020 *)
  • PARI
    parts8katleast(up_to,n) = select(x -> (x>=n), vector(((up_to+0)>>3),k,((k<<3)-0)));
    parts8kplus6(up_to) = vector(((up_to+2)>>3),k,((k<<3)-2));
    partitions_for_A035677(n,parts,from=1,has8k6parts=0) = if(!n,(has8k6parts>0), my(k = #parts, s=0); for(i=from,k,if(parts[i]<=n, s += partitions_for_A035677(n-parts[i],parts,i,(has8k6parts+(6==(parts[i]%8)))))); (s));
    A035677(n) = if(n%2,0,sum(i=1,n>>3, my(k = i*8); partitions_for_A035677(n-k,vecsort(setunion(parts8katleast(n-k,k),parts8kplus6(n-k)),,4)))); \\ Antti Karttunen, Feb 06 2019

Formula

G.f.: (-1 + 1/Product_{k>=0} (1 - x^(8*k + 6)))*(-1 + 1/Product_{k>=1} (1 - x^(8*k))). - Robert Price, Aug 13 2020
Showing 1-3 of 3 results.