cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A050452 a(n) = Sum_{d|n, d == 3 (mod 4)} d.

Original entry on oeis.org

0, 0, 3, 0, 0, 3, 7, 0, 3, 0, 11, 3, 0, 7, 18, 0, 0, 3, 19, 0, 10, 11, 23, 3, 0, 0, 30, 7, 0, 18, 31, 0, 14, 0, 42, 3, 0, 19, 42, 0, 0, 10, 43, 11, 18, 23, 47, 3, 7, 0, 54, 0, 0, 30, 66, 7, 22, 0, 59, 18, 0, 31, 73, 0, 0, 14, 67, 0, 26, 42, 71, 3, 0, 0, 93, 19, 18
Offset: 1

Views

Author

N. J. A. Sloane, Dec 23 1999

Keywords

Crossrefs

Cf. Sum_{d|n, d=k-1 mod k} d: A000593 (k=2), A078182 (k=3), this sequence (k=4).

Programs

  • Maple
    A050452 := proc(n)
            a := 0 ;
            for d in numtheory[divisors](n) do
                    if d mod 4 = 3 then
                            a := a+d ;
                    end if;
            end do:
            a;
    end proc:
    seq(A050452(n),n=1..40) ; # R. J. Mathar, Dec 20 2011
  • Mathematica
    Table[Total[Select[Divisors[n],Mod[#,4]==3&]],{n,80}] (* Harvey P. Dale, Jul 07 2013 *)
  • PARI
    a(n) = sumdiv(n, d, d*((d % 4) == 3)); \\ Amiram Eldar, Nov 26 2023

Formula

a(n) = A000593(n) - A050449(n). - Reinhard Zumkeller, Apr 18 2006
G.f.: Sum_{k>=1} (4*k - 1)*x^(4*k-1)/(1 - x^(4*k-1)). - Ilya Gutkovskiy, Mar 21 2017
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/48 = 0.205616... (A245058). - Amiram Eldar, Nov 26 2023

A035451 Number of partitions of n into parts congruent to 1 mod 4.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 4, 4, 5, 6, 7, 7, 8, 10, 11, 12, 13, 15, 17, 18, 20, 23, 26, 28, 30, 34, 38, 41, 44, 49, 55, 60, 64, 70, 78, 85, 91, 99, 109, 119, 128, 138, 151, 164, 176, 190, 207, 225, 241, 259, 281, 304, 326, 349, 377, 408, 437, 467, 503, 542, 581
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. similar sequences of number of partitions of n into parts congruent to 1 mod m: A000009 (m=2), A035382 (m=3), this sequence (m=4), A109697 (m=5), A109701 (m=6), A109703 (m=7), A277090 (m=8).

Programs

  • Maple
     g := add(x^(n*(4*n-3))/mul((1-x^(4*k))*(1-x^(4*k-3)), k = 1..n), n = 0..5): gser := series(g,x,101): seq(coeff(gser,x,n), n = 0..100); # Peter Bala, Feb 02 2021
  • Mathematica
    nmax=100; CoefficientList[Series[Product[1/(1-x^(4*k+1)),{k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 26 2015 *)
    nmax = 50; kmax = nmax/4; s = Range[0, kmax]*4 + 1;
    Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Aug 03 2020 *)

Formula

G.f.: 1/Product_{k>=0} (1 - x^(4*k+1)). - Vladeta Jovovic, Nov 22 2002
G.f.: Sum_{n>=0} (x^n / Product_{k=1..n} (1 - x^(4*k))). - Joerg Arndt, Apr 07 2011
G.f.: 1 + Sum_{n>=0} (x^(4*n+1) / Product_{k>=n} (1 - x^(4*k+1))) = 1 + Sum_{n>=0} (x^(4*n+1) / Product_{k=0..n} (1 - x^(4*k+1))). - Joerg Arndt, Apr 08 2011
a(n) ~ Gamma(1/4) * exp(Pi*sqrt(n/6)) / (2^(19/8) * 3^(1/8) * n^(5/8) * Pi^(3/4)) * (1 + (Pi/(96*sqrt(6)) - 5*sqrt(3/2)/(16*Pi)) / sqrt(n)). - Vaclav Kotesovec, Feb 26 2015, extended Jan 24 2017
a(n) = (1/n)*Sum_{k=1..n} A050449(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 20 2017
G.f.: Sum_{n>=0} x^(n*(4*n-3))/Product_{k = 1..n} ( (1-x^(4*k))*(1-x^(4*k-3)) ). (Set z = x and q = x^4 in Mc Laughlin et al., Section 1.3, Entry 7.) - Peter Bala, Feb 02 2021

Extensions

Offset changed by N. J. A. Sloane, Apr 11 2010

A109700 Number of partitions of n into parts each equal to 4 mod 5.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 2, 3, 4, 2, 2, 3, 5, 4, 3, 3, 6, 6, 6, 4, 6, 7, 9, 7, 7, 8, 11, 11, 11, 9, 12, 14, 16, 13, 14, 16, 21, 20, 19, 18, 24, 26, 27, 24, 27, 31, 36, 34, 34, 35, 43, 45, 47, 43, 49, 55, 62, 58, 59, 63, 75, 77, 77, 75, 87
Offset: 0

Views

Author

Erich Friedman, Aug 07 2005

Keywords

Examples

			a(30)=2 since 30 = 14+4+4+4+4 = 9+9+4+4+4
		

Crossrefs

Cf. A284103.
Cf. similar sequences of number of partitions of n into parts congruent to m-1 mod m: A000009 (m=2), A035386 (m=3), A035462 (m=4), this sequence (m=5), A109702 (m=6), A109708 (m=7).

Programs

  • Maple
    g:=1/product(1-x^(4+5*j),j=0..25): gser:=series(g,x=0,95): seq(coeff(gser,x,n),n=0..90); # Emeric Deutsch, Mar 30 2006
  • Mathematica
    nmax=100; CoefficientList[Series[Product[1/(1-x^(5*k+4)), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 27 2015 *)

Formula

G.f.: 1/product(1-x^(4+5j), j=0..infinity). - Emeric Deutsch, Mar 30 2006
a(n) ~ Gamma(4/5) * exp(Pi*sqrt(2*n/15)) / (2^(19/10) * 3^(2/5) * 5^(1/10) * Pi^(1/5) * n^(9/10)) * (1 - (9*sqrt(6/5)/(5*Pi) + Pi/(120*sqrt(30))) / sqrt(n)). - Vaclav Kotesovec, Feb 27 2015, extended Jan 24 2017
a(n) = (1/n)*Sum_{k=1..n} A284103(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 20 2017

Extensions

More terms from Michael Somos, Aug 10 2005

A109702 Number of partitions of n into parts each equal to 5 mod 6.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 2, 1, 0, 1, 1, 2, 2, 1, 1, 1, 2, 3, 3, 2, 1, 2, 3, 4, 4, 2, 2, 3, 5, 6, 5, 3, 3, 5, 7, 8, 6, 4, 5, 8, 10, 10, 8, 6, 8, 11, 13, 13, 10, 9, 12, 15, 18, 17, 14, 13, 16, 21, 23, 22, 18, 18, 23, 28, 31, 28, 24, 25, 31, 38, 39, 36, 32, 34
Offset: 0

Views

Author

Erich Friedman, Aug 07 2005

Keywords

Examples

			a(40)=4 since 40 = 35+5 = 29+11 = 23+17 = 5+5+5+5+5+5+5+5.
		

Crossrefs

Cf. A284104.
Cf. similar sequences of number of partitions of n into parts congruent to m-1 mod m: A000009 (m=2), A035386 (m=3), A035462 (m=4), A109700 (m=5), this sequence (m=6), A109708 (m=7).

Programs

Formula

G.f.: 1/product(1-x^(5+6j),j=0..infinity). - Emeric Deutsch, Apr 14 2006
a(n) ~ Gamma(5/6) * exp(Pi*sqrt(n)/3) / (4 * sqrt(3) * Pi^(1/6) * n^(11/12)) * (1 - (55/(24*Pi) + Pi/144) / sqrt(n)). - Vaclav Kotesovec, Feb 27 2015, extended Jan 24 2017
a(n) = (1/n)*Sum_{k=1..n} A284104(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 20 2017
Euler transform of period 6 sequence [ 0, 0, 0, 0, 1, 0, ...]. - Kevin T. Acres, Apr 28 2018

Extensions

Changed offset to 0 and added a(0)=1 by Vaclav Kotesovec, Feb 27 2015

A109708 Number of partitions of n into parts each equal to 6 mod 7.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 2, 1, 0, 0, 1, 1, 2, 2, 1, 0, 1, 1, 2, 3, 3, 1, 1, 1, 2, 3, 4, 3, 2, 1, 2, 3, 5, 5, 5, 2, 2, 3, 5, 6, 8, 5, 3, 3, 5, 7, 10, 9, 7, 4, 5, 7, 11, 12, 12, 8, 6, 7, 12, 14, 17, 15, 11, 8, 12, 15, 20, 21, 19, 13, 13, 16, 22, 26, 28, 23
Offset: 0

Views

Author

Erich Friedman, Aug 07 2005

Keywords

Examples

			a(45)=3 because we have 45=27+6+6+6=20+13+6+6=13+13+13+6.
		

Crossrefs

Cf. A284105.
Cf. similar sequences of number of partitions of n into parts congruent to m-1 mod m: A000009 (m=2), A035386 (m=3), A035462 (m=4), A109700 (m=5), A109702 (m=6), this sequence (m=7).

Programs

  • Maple
    g:=1/product(1-x^(6+7*j),j=0..20): gser:=series(g,x=0,98): seq(coeff(gser,x,n),n=0..95); # Emeric Deutsch, Apr 14 2006
  • Mathematica
    nmax=100; CoefficientList[Series[Product[1/(1-x^(7*k+6)),{k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 27 2015 *)

Formula

G.f.: 1/product(1-x^(6+7j), j=0..infinity). - Emeric Deutsch, Apr 14 2006
a(n) ~ Gamma(6/7) * exp(Pi*sqrt(2*n/21)) / (2^(27/14) * 3^(3/7) * 7^(1/14) * Pi^(1/7) * n^(13/14)) * (1 - (39*sqrt(3/14)/(7*Pi) + 13*Pi/(168*sqrt(42))) / sqrt(n)). - Vaclav Kotesovec, Feb 27 2015, extended Jan 24 2017
a(n) = (1/n)*Sum_{k=1..n} A284105(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 20 2017

Extensions

Changed offset to 0 and added a(0)=1 by Vaclav Kotesovec, Feb 27 2015

A339060 Number of compositions (ordered partitions) of n into distinct parts congruent to 3 mod 4.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 2, 1, 0, 0, 4, 1, 0, 6, 4, 1, 0, 6, 6, 1, 0, 12, 6, 1, 0, 18, 8, 1, 24, 24, 8, 1, 24, 30, 10, 1, 48, 42, 10, 1, 72, 48, 12, 1, 120, 60, 12, 121, 144, 72, 14, 121, 216, 84, 14, 241, 264, 96, 16, 361, 360, 114, 16, 601, 432, 126, 18, 841
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 22 2020

Keywords

Examples

			a(21) = 6 because we have [11, 7, 3], [11, 3, 7], [7, 11, 3], [7, 3, 11], [3, 11, 7] and [3, 7, 11].
		

Crossrefs

Programs

  • Mathematica
    nmax = 75; CoefficientList[Series[Sum[k! x^(k (2 k + 1))/Product[1 - x^(4 j), {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Sum_{k>=0} k! * x^(k*(2*k + 1)) / Product_{j=1..k} (1 - x^(4*j)).

A307978 Expansion of e.g.f. exp((sinh(x) - sin(x))/2).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 10, 1, 0, 280, 120, 1, 15400, 17160, 2080, 1401401, 3203200, 1290640, 190623040, 775975201, 712150400, 36321556720, 239000886400, 413465452401, 9339501072000, 91625659447400, 266045692290560, 3216459513124001, 42923384190336000, 193108117771690680
Offset: 0

Views

Author

Ilya Gutkovskiy, May 08 2019

Keywords

Comments

Number of partitions of n-set into blocks congruent to 3 mod 4.

Crossrefs

Programs

  • Mathematica
    nmax = 29; CoefficientList[Series[Exp[(Sinh[x] - Sin[x])/2], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = Sum[Boole[MemberQ[{3}, Mod[k, 4]]] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 29}]
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp((sinh(x)-sin(x))/2))) \\ Seiichi Manyama, Mar 17 2022
    
  • PARI
    a(n) = if(n==0, 1, sum(k=0, (n-3)\4, binomial(n-1, 4*k+2)*a(n-4*k-3))); \\ Seiichi Manyama, Mar 17 2022

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-3)/4)} binomial(n-1,4*k+2) * a(n-4*k-3). - Seiichi Manyama, Mar 17 2022

A117957 Number of partitions of n into parts larger than 1 and congruent to 1 mod 4.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 2, 1, 1, 1, 2, 2, 1, 2, 3, 3, 2, 2, 4, 4, 3, 3, 5, 6, 5, 4, 6, 8, 7, 6, 8, 10, 10, 9, 10, 13, 13, 12, 14, 17, 18, 16, 18, 22, 23, 22, 23, 28, 31, 29, 30, 36, 39, 39, 39, 45, 51, 50, 51, 57, 64, 65, 65, 73, 81, 83, 84, 91, 102, 106, 106
Offset: 0

Views

Author

Emeric Deutsch, Apr 05 2006

Keywords

Comments

Also number of partitions of n such that 2k and 2k+1 occur with the same multiplicities. Example: a(26)=3 because we have [11,10,3,2], [9,8,5,4] and [7,7,6,6]. It is easy to find a bijection between these partitions and those described in the definition.

Examples

			a(26)=3 because we have [21,5],[17,9] and [13,13].
		

Crossrefs

Programs

  • Maple
    g:=1/product(1-x^(4*i+1),i=1..50): gser:=series(g,x=0,93): seq(coeff(gser,x,n),n=0..88);
  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1/(1-x^(4*k+1)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 07 2016 *)

Formula

G.f.: 1/product(1-x^(4i+1), i=1..infinity).
a(n) ~ exp(sqrt(n/6)*Pi) * Pi^(1/4) * Gamma(1/4) / (2^(31/8) * 3^(5/8) * n^(9/8)). - Vaclav Kotesovec, Mar 07 2016

A374019 Expansion of Product_{k>=1} 1 / (1 - x^(4*k-1))^2.

Original entry on oeis.org

1, 0, 0, 2, 0, 0, 3, 2, 0, 4, 4, 2, 5, 6, 7, 8, 8, 12, 15, 12, 17, 26, 23, 24, 37, 40, 39, 50, 62, 66, 74, 86, 101, 116, 122, 144, 175, 184, 202, 246, 274, 294, 340, 388, 432, 480, 533, 610, 684, 742, 835, 956, 1045, 1144, 1299, 1450, 1586, 1758, 1965, 2182, 2400, 2638, 2941, 3268, 3560, 3922
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 25 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 65; CoefficientList[Series[Product[1/(1 - x^(4 k - 1))^2, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(0) = 1; a(n) = (2/n) * Sum_{k=1..n} A050452(k) * a(n-k).
a(n) = Sum_{k=0..n} A035462(k) * A035462(n-k).
a(n) ~ Pi^(3/2) * exp(Pi*sqrt(n/3)) / (2*sqrt(3) * Gamma(1/4)^2 * n). - Vaclav Kotesovec, Jun 25 2024
Showing 1-9 of 9 results.