cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A169975 Expansion of Product_{i>=0} (1 + x^(4*i+1)).

Original entry on oeis.org

1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 3, 2, 0, 1, 3, 3, 1, 1, 4, 4, 1, 1, 4, 5, 2, 1, 5, 7, 3, 1, 5, 8, 5, 2, 6, 10, 6, 2, 6, 12, 9, 3, 7, 14, 11, 4, 7, 16, 15, 6, 8, 19, 18, 8, 9, 21, 23, 11, 10, 24, 27, 14, 11, 27, 34, 19, 13, 30, 39, 24, 15, 33, 47, 31, 18, 37, 54, 38
Offset: 0

Views

Author

N. J. A. Sloane, Aug 29 2010

Keywords

Comments

Number of partitions into distinct parts of the form 4*k+1.
In general, if a > 0, b > 0, GCD(a,b) = 1 and g.f. = Product_{k>=0} (1 + x^(a*k + b)), then a(n) ~ exp(Pi*sqrt(n/(3*a))) / (2^(1 + b/a) * (3*a)^(1/4) * n^(3/4)) [Meinardus, 1954]. - Vaclav Kotesovec, Aug 26 2015
Convolution of A147599 and A169975 is A000700. - Vaclav Kotesovec, Jan 18 2017

Crossrefs

Programs

  • Mathematica
    nmax = 200; CoefficientList[Series[Product[(1 + x^(4*k+1)), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 26 2015 *)
    nmax = 200; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[If[Mod[k, 4] == 1, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}]; ], {k, 2, nmax}]; poly (* Vaclav Kotesovec, Jan 18 2017 *)

Formula

G.f.: Sum_{n>=0} (x^(2*n^2 - n) / Product_{k=1..n} (1 - x^(4*k))). - Joerg Arndt, Mar 10 2011
G.f.: G(0)/x where G(k) = 1 - 1/(1 - 1/(1 - 1/(1+(x)^(4*k+1))/G(k+1) )); (recursively defined continued fraction, see A006950). - Sergei N. Gladkovskii, Jan 28 2013
a(n) ~ exp(Pi*sqrt(n)/(2*sqrt(3))) / (2^(7/4) * 3^(1/4) * n^(3/4)) * (1 - (3*sqrt(3)/(4*Pi) + Pi/(192*sqrt(3))) / sqrt(n)). - Vaclav Kotesovec, Aug 26 2015, extended Jan 18 2017

A035382 Number of partitions of n into parts congruent to 1 mod 3.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 3, 4, 4, 5, 6, 7, 8, 10, 11, 13, 15, 17, 19, 23, 26, 29, 33, 38, 42, 48, 54, 61, 68, 77, 85, 96, 107, 119, 132, 148, 163, 181, 201, 223, 245, 272, 299, 330, 363, 400, 438, 483, 529, 580, 635, 697, 760, 832, 908, 992, 1081, 1180, 1283, 1399, 1521
Offset: 0

Views

Author

Keywords

Comments

a(n) = A116373(3*n). - Reinhard Zumkeller, Feb 15 2006

Examples

			a(3) = 1 because we have [1,1,1];
a(4) = 2 because we have [1,1,1,1] and [4];
a(9) = 4 because we have [7,1,1], [4,4,1], [4,1,1,1,1,1] and [1,1,1,1,1,1,1,1,1].
1 + x + x^2 + x^3 + 2*x^4 + 2*x^5 + 2*x^6 + 3*x^7 + 4*x^8 + 4*x^9 + ...
		

Crossrefs

Programs

  • Maple
    g:= 1/product(1-x^(1+3*j), j=0..50): gser:= series(g, x=0, 64): seq(coeff(gser, x, n), n=0..61); # Emeric Deutsch, Mar 30 2006
    # second Maple program
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, b(n, i-3) +`if`(i>n, 0, b(n-i, i))))
        end:
    a:= n-> b(n, 3*iquo(n, 3)+1):
    seq(a(n), n=0..100);  # Alois P. Heinz, Oct 03 2012
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-3] + If[i>n, 0, b[n-i, i]]]]; a[n_] := b[n, 3*Quotient[n, 3]+1]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Mar 23 2015, after Alois P. Heinz *)
    nmax = 100; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = -1; Do[If[Mod[k, 3] == 1, Do[poly[[j + 1]] -= poly[[j - k + 1]], {j, nmax, k, -1}];], {k, 2, nmax}]; poly2 = Take[poly, {2, nmax + 1}]; poly3 = 1 + Sum[poly2[[n]]*x^n, {n, 1, Length[poly2]}]; CoefficientList[Series[1/poly3, {x, 0, Length[poly2]}], x] (* Vaclav Kotesovec, Jan 13 2017 *)
    nmax = 50; s = Range[0, nmax/3]*3 + 1;
    Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Aug 05 2020 *)

Formula

a(n) = 1/n*Sum_{k=1..n} A078181(k)*a(n-k), a(0) = 1.
G.f.: 1/prod(j>=0, 1-x^(1+3*j) ). - Emeric Deutsch, Mar 30 2006
From Joerg Arndt, Oct 02 2012: (Start)
G.f.: sum(n>=0, q^n/prod(k=1..n, 1-q^(3*k)) ); this is the special case of R=1, M=3 of the g.f. sum(n>=0, q^(R*n)/prod(k=1..n, 1-q^(M*k) ) ) for partitions into parts R mod M (where R!=0).
G.f. sum(n>=0, q^(3*n^2-2*n) / prod(k=0..n-1, (1-q^(3*k+3))*(1-q^(3*k+1))) ); this is the special case of R=1, M=3 of the g.f. sum(n>=0, q^(M*n^2+(R-M)*n) / prod(k=0..n-1, (1-q^(M*k+M))*(1-q^(M*k+R))) ) for partitions into parts R mod M (where R!=0). (See Fxtbook link)
(End)
a(n) ~ Gamma(1/3) * exp(sqrt(2*n)*Pi/3) / (2*sqrt(3) * (2*Pi*n)^(2/3)) * (1 + (Pi/72 - 2/(3*Pi)) / sqrt(2*n)). - Vaclav Kotesovec, Feb 26 2015, extended Jan 24 2017
Euler transform of period 3 sequence [ 1, 0, 0, ...]. - Kevin T. Acres, Apr 28 2018

A050449 a(n) = Sum_{d|n, d == 1 (mod 4)} d.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 1, 10, 6, 1, 1, 14, 1, 6, 1, 18, 10, 1, 6, 22, 1, 1, 1, 31, 14, 10, 1, 30, 6, 1, 1, 34, 18, 6, 10, 38, 1, 14, 6, 42, 22, 1, 1, 60, 1, 1, 1, 50, 31, 18, 14, 54, 10, 6, 1, 58, 30, 1, 6, 62, 1, 31, 1, 84, 34, 1, 18, 70, 6, 1, 10, 74, 38, 31, 1
Offset: 1

Views

Author

N. J. A. Sloane, Dec 23 1999

Keywords

Comments

Not multiplicative: a(3)*a(7) != a(21), for example. - R. J. Mathar, Dec 20 2011

Crossrefs

Cf. Sum_{d|n, d==1 (mod k)} d: A000593 (k=2), A078181 (k=3), this sequence (k=4), A284097 (k=5), A284098 (k=6), A284099 (k=7), A284100 (k=8).

Programs

  • Maple
    A050449 := proc(n)
            a := 0 ;
            for d in numtheory[divisors](n) do
                    if d mod 4 = 1 then
                            a := a+d ;
                    end if;
            end do:
            a;
    end proc:
    seq(A050449(n),n=1..40) ; # R. J. Mathar, Dec 20 2011
  • Mathematica
    a[n_] := DivisorSum[n, Boole[Mod[#, 4] == 1]*#&]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jan 30 2018 *)
  • PARI
    a(n) = sumdiv(n, d, d*((d % 4) == 1)); \\ Michel Marcus, Jan 30 2018

Formula

G.f.: Sum_{n>=0} (4*n+1)*x^(4*n+1)/(1-x^(4*n+1)). - Vladeta Jovovic, Nov 14 2002
a(n) = A000593(n) - A050452(n). - Reinhard Zumkeller, Apr 18 2006
G.f.: Sum_{n >= 1} x^n*(1 + 3*x^(4*n))/(1 - x^(4*n))^2. - Peter Bala, Dec 19 2021
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/48 = 0.205616... (A245058). - Amiram Eldar, Nov 26 2023

Extensions

More terms from Vladeta Jovovic, Nov 14 2002
More terms from Reinhard Zumkeller, Apr 18 2006

A035386 Number of partitions of n into parts congruent to 2 mod 3.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 1, 2, 1, 3, 2, 3, 3, 4, 4, 6, 5, 7, 7, 9, 9, 12, 11, 15, 15, 18, 19, 23, 23, 29, 29, 35, 37, 43, 45, 53, 55, 64, 68, 78, 82, 95, 99, 114, 121, 136, 145, 164, 173, 196, 208, 232, 248, 276, 294, 328, 349, 386, 413, 456, 486, 537, 572, 629, 673, 737, 787
Offset: 0

Views

Author

Keywords

Comments

a(n) = A116376(3*n). - Reinhard Zumkeller, Feb 15 2006

Crossrefs

Programs

  • Maple
    g:=add(x^(n*(3*n-1))/mul((1-x^(3*k))*(1-x^(3*k-1)), k = 1..n), n = 0..6): gser:=series(g,x,101): seq(coeff(gser,x,n), n = 0..100); # Peter Bala, Feb 02 2021
  • Mathematica
    nmax=100; CoefficientList[Series[Product[1/(1-x^(3*k+2)),{k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 26 2015 *)
    nmax = 100; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 0; Do[If[Mod[k, 3] == 2, Do[poly[[j + 1]] -= poly[[j - k + 1]], {j, nmax, k, -1}];], {k, 2, nmax}]; poly2 = Take[poly, {2, nmax + 1}]; poly3 = 1 + Sum[poly2[[n]]*x^n, {n, 1, Length[poly2]}]; CoefficientList[Series[1/poly3, {x, 0, Length[poly2]}], x] (* Vaclav Kotesovec, Jan 13 2017 *)
    nmax = 50; s = Range[0, nmax/3]*3 + 2;
    Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Aug 05 2020 *)
  • PARI
    {a(n)= if( n<0, 0, polcoeff( 1 / prod( k=1, n, 1 - (k%3==2) * x^k, 1 + x * O(x^n)), n))} /* Michael Somos, Jul 24 2007 */

Formula

a(n) = 1/n*Sum_{k=1..n} A078182(k)*a(n-k), a(0) = 1. - Vladeta Jovovic, Nov 21 2002
Euler transform of period 3 sequence [ 0, 1, 0, ...]. - Michael Somos, Jul 24 2007
a(n) ~ Gamma(2/3) * exp(sqrt(2*n)*Pi/3) / (2^(11/6) * sqrt(3) * Pi^(1/3) * n^(5/6)) * (1 + (Pi/72 - 5/(3*Pi)) / sqrt(2*n)). - Vaclav Kotesovec, Feb 26 2015, extended Jan 24 2017
G.f.: A(x) = Sum_{n >= 0} x^(n*(3*n-1))/Product_{k = 1..n} ((1 - x^(3*k)) *(1 - x^(3*k-1))). (Set z = x^2 and q = x^3 in Mc Laughlin et al., Section 1.3, Entry 7.) - Peter Bala, Feb 02 2021

A109697 Number of partitions of n into parts each equal to 1 mod 5.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 5, 6, 7, 7, 7, 8, 10, 11, 12, 12, 13, 15, 17, 18, 19, 20, 23, 26, 28, 29, 31, 34, 38, 41, 43, 45, 50, 55, 60, 63, 66, 71, 79, 85, 90, 94, 101, 110, 120, 127, 133, 141, 153, 165, 176, 184, 195, 210, 227, 241, 254, 267, 286, 307, 327
Offset: 0

Views

Author

Erich Friedman, Aug 07 2005

Keywords

Examples

			a(11)=3 since 11 = 11 = 6+1+1+1+1+1 = 1+1+1+1+1+1+1+1+1+1+1
		

Crossrefs

Cf. similar sequences of number of partitions of n into parts congruent to 1 mod m: A000009 (m=2), A035382 (m=3), A035451 (m=4), this sequence (m=5), A109701 (m=6), A109703 (m=7), A277090 (m=8).

Programs

Formula

G.f.: 1/product(1-x^(1+5j), j=0..infinity). - Emeric Deutsch, Mar 30 2006
a(n) ~ Gamma(1/5) * exp(Pi*sqrt(2*n/15)) / (2^(8/5) * 3^(1/10) * 5^(2/5) * Pi^(4/5) * n^(3/5)) * (1 - (3*sqrt(3/10)/(5*Pi) + Pi/(120*sqrt(30))) / sqrt(n)). - Vaclav Kotesovec, Feb 27 2015, extended Jan 24 2017
a(n) = (1/n)*Sum_{k=1..n} A284097(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 20 2017
G.f.: Sum_{k>=0} x^k / Product_{j=1..k} (1 - x^(5*j)). - Ilya Gutkovskiy, Jul 17 2019

Extensions

More terms from Emeric Deutsch, Mar 30 2006

A109701 Number of partitions of n into parts each equal to 1 mod 6.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 5, 6, 7, 7, 7, 7, 8, 10, 11, 12, 12, 12, 13, 15, 17, 18, 19, 19, 20, 23, 26, 28, 29, 30, 31, 34, 38, 41, 43, 44, 46, 50, 55, 60, 63, 65, 67, 72, 79, 85, 90, 93, 96, 102, 111, 120, 127, 132, 136, 143, 154, 166, 176, 183, 189, 198
Offset: 0

Views

Author

Erich Friedman, Aug 07 2005

Keywords

Comments

Euler transform of period 6 sequence [ 1, 0, 0, 0, 0, 0, ...]. - Kevin T. Acres, Apr 28 2018

Examples

			a(10)=2 since 10 = 7+1+1+1 = 1+1+1+1+1+1+1+1+1+1
		

Crossrefs

Cf. A284098.
Cf. similar sequences of number of partitions of n into parts congruent to 1 mod m: A000009 (m=2), A035382 (m=3), A035451 (m=4), A109697 (m=5), this sequence (m=6), A109703 (m=7), A277090 (m=8).

Programs

  • Maple
    g:=1/product(1-x^(1+6*j),j=0..20): gser:=series(g,x=0,77): seq(coeff(gser,x,n),n=0..74); # Emeric Deutsch, Apr 14 2006
  • Mathematica
    nmax=100; CoefficientList[Series[Product[1/(1-x^(6*k+1)),{k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 27 2015 *)

Formula

G.f.: 1/Product_{j >= 0} (1-x^(1+6j)). - Emeric Deutsch, Apr 14 2006
a(n) ~ Gamma(1/6) * exp(Pi*sqrt(n)/3) / (4 * sqrt(3) * Pi^(5/6) * n^(7/12)) * (1 - (7/(24*Pi) + Pi/144) / sqrt(n)). - Vaclav Kotesovec, Feb 27 2015, extended Jan 24 2017
a(n) = (1/n)*Sum_{k=1..n} A284098(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 20 2017
G.f.: Sum_{k>=0} x^k / Product_{j=1..k} (1 - x^(6*j)). - Ilya Gutkovskiy, Jul 17 2019

Extensions

Changed offset to 0 and added a(0)=1 by Vaclav Kotesovec, Feb 27 2015

A109703 Number of partitions of n into parts each equal to 1 mod 7.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 5, 6, 7, 7, 7, 7, 7, 8, 10, 11, 12, 12, 12, 12, 13, 15, 17, 18, 19, 19, 19, 20, 23, 26, 28, 29, 30, 30, 31, 34, 38, 41, 43, 44, 45, 46, 50, 55, 60, 63, 65, 66, 68, 72, 79, 85, 90, 93, 95, 97, 103, 111, 120, 127, 132, 135
Offset: 0

Views

Author

Erich Friedman, Aug 07 2005

Keywords

Examples

			a(15)=3 because we have 15=8+1+1+1+1+1+1+1=1+1+1+1+1+1+1+1+1+1+1+1+1+1+1.
		

Crossrefs

Cf. A284099.
Cf. similar sequences of number of partitions of n into parts congruent to 1 mod m: A000009 (m=2), A035382 (m=3), A035451 (m=4), A109697 (m=5), A109701 (m=6), this sequence (m=7), A277090 (m=8).

Programs

  • Maple
    g:=1/product(1-x^(1+7*j),j=0..20): gser:=series(g,x=0,80): seq(coeff(gser,x,n),n=0..77); # Emeric Deutsch, Apr 14 2006
  • Mathematica
    nmax=100; CoefficientList[Series[Product[1/(1-x^(7*k+1)),{k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 27 2015 *)

Formula

G.f.: 1/product(1-x^(1+7j), j=0..infinity). - Emeric Deutsch, Apr 14 2006
a(n) ~ Gamma(1/7) * exp(Pi*sqrt(2*n/21)) / (2^(11/7) * 3^(1/14) * 7^(3/7) * Pi^(6/7) * n^(4/7)) * (1 - (2*sqrt(6/7)/(7*Pi) + 13*Pi/(168*sqrt(42))) / sqrt(n)). - Vaclav Kotesovec, Feb 27 2015, extended Jan 24 2017
a(n) = (1/n)*Sum_{k=1..n} A284099(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 20 2017
G.f.: Sum_{k>=0} x^k / Product_{j=1..k} (1 - x^(7*j)). - Ilya Gutkovskiy, Jul 17 2019

Extensions

Changed offset to 0 and added a(0)=1 by Vaclav Kotesovec, Feb 27 2015

A306347 Expansion of e.g.f. exp((sin(x) + sinh(x))/2).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 7, 22, 57, 128, 389, 1904, 9329, 38040, 132147, 542648, 3283633, 20997824, 114657097, 536178880, 2784500161, 19876061312, 153326461311, 1034551839872, 6051063485481, 38079448046208, 312420426154893, 2785055242928768, 22141255520251313
Offset: 0

Views

Author

Ilya Gutkovskiy, May 08 2019

Keywords

Comments

Number of partitions of n-set into blocks congruent to 1 mod 4.

Crossrefs

Programs

  • Mathematica
    nmax = 28; CoefficientList[Series[Exp[(Sin[x] + Sinh[x])/2], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = Sum[Boole[MemberQ[{1}, Mod[k, 4]]] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 28}]
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp((sin(x)+sinh(x))/2))) \\ Seiichi Manyama, Mar 17 2022
    
  • PARI
    a(n) = if(n==0, 1, sum(k=0, (n-1)\4, binomial(n-1, 4*k)*a(n-4*k-1))); \\ Seiichi Manyama, Mar 17 2022

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/4)} binomial(n-1,4*k) * a(n-4*k-1). - Seiichi Manyama, Mar 17 2022

A339059 Number of compositions (ordered partitions) of n into distinct parts congruent to 1 mod 4.

Original entry on oeis.org

1, 1, 0, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1, 4, 6, 0, 1, 4, 6, 0, 1, 6, 12, 0, 1, 6, 18, 24, 1, 8, 24, 24, 1, 8, 30, 48, 1, 10, 42, 72, 1, 10, 48, 120, 121, 12, 60, 144, 121, 12, 72, 216, 241, 14, 84, 264, 361, 14, 96, 360, 601, 16, 114, 432, 841, 736, 126, 552, 1201, 738
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 22 2020

Keywords

Examples

			a(15) = 6 because we have [9, 5, 1], [9, 1, 5], [5, 9, 1], [5, 1, 9], [1, 9, 5] and [1, 5, 9].
		

Crossrefs

Programs

  • Mathematica
    nmax = 70; CoefficientList[Series[Sum[k! x^(k (2 k - 1))/Product[1 - x^(4 j), {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Sum_{k>=0} k! * x^(k*(2*k - 1)) / Product_{j=1..k} (1 - x^(4*j)).

A277090 Expansion of Product_{k>=0} 1/(1 - x^(8*k+1)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 5, 6, 7, 7, 7, 7, 7, 7, 8, 10, 11, 12, 12, 12, 12, 12, 13, 15, 17, 18, 19, 19, 19, 19, 20, 23, 26, 28, 29, 30, 30, 30, 31, 34, 38, 41, 43, 44, 45, 45, 46, 50, 55, 60, 63, 65, 66, 67, 68, 72, 79, 85, 90, 93, 95, 96, 98, 103, 111, 120, 127, 132, 135, 137, 139, 145
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 29 2016

Keywords

Comments

Number of partitions of n into parts congruent to 1 mod 8.
More generally, the ordinary generating function for the number of partitions of n into parts congruent to 1 mod m (for m>0) is Product_{k>=0} 1/(1 - x^(m*k+1)).

Examples

			a(10) = 2, because we have [9, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Cf. similar sequences of number of partitions of n into parts congruent to 1 mod m: A000009 (m=2), A035382 (m=3), A035451 (m=4), A109697 (m=5), A109701 (m=6), A109703 (m=7).

Programs

  • Mathematica
    CoefficientList[Series[QPochhammer[x, x^8]^(-1), {x, 0, 90}], x]

Formula

G.f.: Product_{k>=0} 1/(1 - x^(8*k+1)).
a(n) ~ exp((Pi*sqrt(n))/(2*sqrt(3)))*Gamma(1/8)/(4*3^(1/16)*(2*Pi)^(7/8)*n^(9/16)).
a(n) = (1/n)*Sum_{k=1..n} A284100(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 20 2017
Showing 1-10 of 16 results. Next