A186082 Numbers n such that log(A156668(n)*(1 + n mod 2))/n^2 is smaller than for any prior n.
1, 2, 3, 5, 10, 13, 18, 31, 49, 98, 116, 232, 281, 397, 678, 1075, 2150, 3225, 4300, 5375, 5772, 6847, 7922, 8997, 17994, 19069
Offset: 1
Keywords
Examples
[1, 0.6931471805599453094172321215] [2, 0.5994738181995926360154858945] [3, 0.5898075219334671955890478209] [5, 0.5866039232314788114510488867] [10, 0.5865963134453746145925657102] [13, 0.5864356249925781873672553233] [18, 0.5864232678262123920533476064]
Links
- David Broadhurst, Table of n for n = 1..1000
- Kevin Acres and David Broadhurst, Rational points on y^2 = x^3 + 10*x^2 + 5*x
Crossrefs
Cf. A156668.
Programs
-
PARI
T(k)={ local(P=ellpow(ellinit([0,10,0,5,0]),[-1,2],k),s,t); s=P[1]^2; t=abs(numerator(P[2]^4/s-80*s)); while(t%2==0,t=t/2;); t; } M(k)=1+k%2; V(k)=log(M(k)*T(k))/k^2; { lowest=1; for(i=1,20000, l=V(i); if(l