A000726 Number of partitions of n in which no parts are multiples of 3.
1, 1, 2, 2, 4, 5, 7, 9, 13, 16, 22, 27, 36, 44, 57, 70, 89, 108, 135, 163, 202, 243, 297, 355, 431, 513, 617, 731, 874, 1031, 1225, 1439, 1701, 1991, 2341, 2731, 3197, 3717, 4333, 5022, 5834, 6741, 7803, 8991, 10375, 11923, 13716, 15723, 18038, 20628, 23603
Offset: 0
Examples
There are a(6)=7 partitions of 6 into parts != 0 (mod 3): [ 1] [5,1], [ 2] [4,2], [ 3] [4,1,1], [ 4] [2,2,2], [ 5] [2,2,1,1], [ 6] [2,1,1,1,1], and [ 7] [1,1,1,1,1,1] . From _Joerg Arndt_, Dec 29 2012: (Start) There are a(10)=22 partitions p(1)+p(2)+...+p(m)=10 such that p(k)!=p(k-2) (that is, no part appears more than twice): [ 1] [ 3 3 2 1 1 ] [ 2] [ 3 3 2 2 ] [ 3] [ 4 2 2 1 1 ] [ 4] [ 4 3 2 1 ] [ 5] [ 4 3 3 ] [ 6] [ 4 4 1 1 ] [ 7] [ 4 4 2 ] [ 8] [ 5 2 2 1 ] [ 9] [ 5 3 1 1 ] [10] [ 5 3 2 ] [11] [ 5 4 1 ] [12] [ 5 5 ] [13] [ 6 2 1 1 ] [14] [ 6 2 2 ] [15] [ 6 3 1 ] [16] [ 6 4 ] [17] [ 7 2 1 ] [18] [ 7 3 ] [19] [ 8 1 1 ] [20] [ 8 2 ] [21] [ 9 1 ] [22] [ 10 ] (End)
References
- G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109.
- L. Carlitz, Generating functions and partition problems, pp. 144-169 of A. L. Whiteman, ed., Theory of Numbers, Proc. Sympos. Pure Math., 8 (1965). Amer. Math. Soc., see p. 145.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe and Vaclav Kotesovec, Table of n, a(n) for n = 0..5000 (terms 0..1000 from T. D. Noe)
- George E. Andrews, Partition Identities for Two-Color Partitions, Hardy-Ramanujan Journal, Hardy-Ramanujan Society, 2021, Special Commemorative volume in honour of Srinivasa Ramanujan, 2021, 44, pp.74-80. hal-03498190. See p. 79.
- Riccardo Aragona, Roberto Civino, and Norberto Gavioli, A modular idealizer chain and unrefinability of partitions with repeated parts, arXiv:2301.06347 [math.RA], 2023.
- N. Chair, Partition identities from Partial Supersymmetry, arXiv:hep-th/0409011, 2004.
- Edray Herber Goins and Talitha M. Washington, On the generalized climbing stairs problem, Ars Combin. 117 (2014), 183-190. MR3243840 (Reviewed), arXiv:0909.5459 [math.CO], 2009.
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 15.
- Eric Weisstein's World of Mathematics, Partition function b_k.
- Wikipedia, Glaisher's Theorem.
Crossrefs
Programs
-
Haskell
a000726 n = p a001651_list n where p _ 0 = 1 p ks'@(k:ks) m | m < k = 0 | otherwise = p ks' (m - k) + p ks m -- Reinhard Zumkeller, Aug 23 2011
-
Maple
g:=product(1+x^j+x^(2*j),j=1..60): gser:=series(g,x=0,55): seq(coeff(gser,x,n),n=0..50); # Emeric Deutsch, Apr 18 2006 # second Maple program: with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add( `if`(irem(d, 3)=0, 0, d), d=divisors(j)), j=1..n)/n) end: seq(a(n), n=0..50); # Alois P. Heinz, Nov 17 2017
-
Mathematica
f[0] = 1; f[n_] := Coefficient[Expand@ Product[1 + x^k + x^(2k), {k, n}], x^n]; Table[f@n, {n, 0, 40}] (* Robert G. Wilson v, Nov 10 2006 *) QP = QPochhammer; CoefficientList[QP[q^3]/QP[q] + O[q]^60, q] (* Jean-François Alcover, Nov 24 2015 *) nmax = 50; CoefficientList[Series[Product[(1 - x^(3*k))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 02 2016 *) Table[Count[IntegerPartitions@n, x_ /; ! MemberQ [Mod[x, 3], 0, 2] ], {n, 0, 50}] (* Robert Price, Jul 28 2020 *) Table[Count[IntegerPartitions[n],?(NoneTrue[Mod[#,3]==0&])],{n,0,50}] (* _Harvey P. Dale, Sep 06 2022 *)
-
PARI
a(n)=if(n<0,0,polcoeff(eta(x^3+x*O(x^n))/eta(x+x*O(x^n)),n))
-
PARI
lista(nn) = {q='q+O('q^nn); Vec(eta(q^3)/eta(q))} \\ Altug Alkan, Mar 20 2018
Formula
G.f.: 1/(Product_{k>=1} (1-x^(3*k-1))*(1-x^(3*k-2))) = Product_{k>=1} (1 + x^k + x^(2*k)) (where 1 + x + x^2 is the 3rd cyclotomic polynomial).
a(n) = A061197(n, n).
Given g.f. A(x) then B(x) = x*A(x^6)^2 satisfies 0 = f(B(x), B(x^2), B(x^4)) where f(u,v,w) = +v^2 +v*w^2 -v*u^2 +3*u^2*w^2. - Michael Somos, May 28 2006
G.f.: P(x^3)/P(x) where P(x) = Product_{k>=1} (1 - x^k). - Joerg Arndt, Jun 21 2011
a(n) ~ 2*Pi * BesselI(1, sqrt((12*n + 1)/3)*Pi/3) / (3*sqrt(12*n + 1)) ~ exp(2*Pi*sqrt(n)/3) / (6*n^(3/4)) * (1 + (Pi/36 - 9/(16*Pi))/sqrt(n) + (Pi^2/2592 - 135/(512*Pi^2) - 5/64)/n). - Vaclav Kotesovec, Aug 23 2015, extended Jan 13 2017
a(n) = (1/n)*Sum_{k=1..n} A046913(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 21 2017
G.f.: exp(Sum_{k>=1} x^k*(1 + x^k)/(k*(1 - x^(3*k)))). - Ilya Gutkovskiy, Aug 15 2018
Extensions
More terms from Olivier Gérard
Comments