cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A000726 Number of partitions of n in which no parts are multiples of 3.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 7, 9, 13, 16, 22, 27, 36, 44, 57, 70, 89, 108, 135, 163, 202, 243, 297, 355, 431, 513, 617, 731, 874, 1031, 1225, 1439, 1701, 1991, 2341, 2731, 3197, 3717, 4333, 5022, 5834, 6741, 7803, 8991, 10375, 11923, 13716, 15723, 18038, 20628, 23603
Offset: 0

Views

Author

Keywords

Comments

Case k=4, i=3 of Gordon Theorem.
Expansion of q^(-1/12)*eta(q^3)/eta(q) in powers of q. - Michael Somos, Apr 20 2004
Euler transform of period 3 sequence [1,1,0,...]. - Michael Somos, Apr 20 2004
Also the number of partitions with at most 2 parts of size 1 and all differences between parts at distance 3 are greater than 1. Example: a(6)=7 because we have [6],[5,1],[4,2],[4,1,1],[3,3],[3,2,1] and [2,2,2] (for example, [2,2,1,1] does not qualify because the difference between the first and the fourth parts is equal to 1). - Emeric Deutsch, Apr 18 2006
Also the number of partitions of n where no part appears more than twice. Example: a(6)=7 because we have [6],[5,1],[4,2],[4,1,1],[3,3],[3,2,1] and [2,2,1,1]. - Emeric Deutsch, Apr 18 2006
Also the number of partitions of n with least part either 1 or 2 and with differences of consecutive parts at most 2. Example: a(6)=7 because we have [4,2], [3,2,1], [3,1,1,1], [2,2,2], [2,2,1,1], [2,1,1,1,1] and [1,1,1,1,1,1]. - Emeric Deutsch, Apr 18 2006
Equals left border of triangle A174714. - Gary W. Adamson, Mar 27 2010
Triangle A113685 is equivalent to p(x) = p(x^2) * A000009(x); given A000041(x) = p(x). Triangle A176202 is equivalent to p(x) = p(x^3) * A000726(x). - Gary W. Adamson, Apr 11 2010
Convolution of A035382 and A035386. - Vaclav Kotesovec, Aug 23 2015
The number of partitions of n in which no parts are multiples of k equals the number of partitions of n where no part appears more than k-1 times. - Gregory L. Simay, Oct 15 2022

Examples

			There are a(6)=7 partitions of 6 into parts != 0 (mod 3):
[ 1]  [5,1],
[ 2]  [4,2],
[ 3]  [4,1,1],
[ 4]  [2,2,2],
[ 5]  [2,2,1,1],
[ 6]  [2,1,1,1,1], and
[ 7]  [1,1,1,1,1,1]
.
From _Joerg Arndt_, Dec 29 2012: (Start)
There are a(10)=22 partitions p(1)+p(2)+...+p(m)=10 such that p(k)!=p(k-2) (that is, no part appears more than twice):
[ 1]  [ 3 3 2 1 1 ]
[ 2]  [ 3 3 2 2 ]
[ 3]  [ 4 2 2 1 1 ]
[ 4]  [ 4 3 2 1 ]
[ 5]  [ 4 3 3 ]
[ 6]  [ 4 4 1 1 ]
[ 7]  [ 4 4 2 ]
[ 8]  [ 5 2 2 1 ]
[ 9]  [ 5 3 1 1 ]
[10]  [ 5 3 2 ]
[11]  [ 5 4 1 ]
[12]  [ 5 5 ]
[13]  [ 6 2 1 1 ]
[14]  [ 6 2 2 ]
[15]  [ 6 3 1 ]
[16]  [ 6 4 ]
[17]  [ 7 2 1 ]
[18]  [ 7 3 ]
[19]  [ 8 1 1 ]
[20]  [ 8 2 ]
[21]  [ 9 1 ]
[22]  [ 10 ]
(End)
		

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109.
  • L. Carlitz, Generating functions and partition problems, pp. 144-169 of A. L. Whiteman, ed., Theory of Numbers, Proc. Sympos. Pure Math., 8 (1965). Amer. Math. Soc., see p. 145.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000009 (no multiples of 2), A001935 (no of 4), A035959 (no of 5), A219601 (no of 6), A035985, A001651, A003105, A035361, A035360.
Cf. A174714. - Gary W. Adamson, Mar 27 2010
Cf. A113685, A176202. - Gary W. Adamson, Apr 11 2010
Cf. A046913.
Column k=3 of A286653.
Number of r-regular partitions for r = 2 through 12: A000009, A000726, A001935, A035959, A219601, A035985, A261775, A104502, A261776, A328545, A328546.

Programs

  • Haskell
    a000726 n = p a001651_list n where
       p _  0 = 1
       p ks'@(k:ks) m | m < k     = 0
                      | otherwise = p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Aug 23 2011
  • Maple
    g:=product(1+x^j+x^(2*j),j=1..60): gser:=series(g,x=0,55): seq(coeff(gser,x,n),n=0..50); # Emeric Deutsch, Apr 18 2006
    # second Maple program:
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(
         `if`(irem(d, 3)=0, 0, d), d=divisors(j)), j=1..n)/n)
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Nov 17 2017
  • Mathematica
    f[0] = 1; f[n_] := Coefficient[Expand@ Product[1 + x^k + x^(2k), {k, n}], x^n]; Table[f@n, {n, 0, 40}] (* Robert G. Wilson v, Nov 10 2006 *)
    QP = QPochhammer; CoefficientList[QP[q^3]/QP[q] + O[q]^60, q] (* Jean-François Alcover, Nov 24 2015 *)
    nmax = 50; CoefficientList[Series[Product[(1 - x^(3*k))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 02 2016 *)
    Table[Count[IntegerPartitions@n, x_ /; ! MemberQ [Mod[x, 3], 0, 2] ], {n, 0, 50}] (* Robert Price, Jul 28 2020 *)
    Table[Count[IntegerPartitions[n],?(NoneTrue[Mod[#,3]==0&])],{n,0,50}] (* _Harvey P. Dale, Sep 06 2022 *)
  • PARI
    a(n)=if(n<0,0,polcoeff(eta(x^3+x*O(x^n))/eta(x+x*O(x^n)),n))
    
  • PARI
    lista(nn) = {q='q+O('q^nn); Vec(eta(q^3)/eta(q))} \\ Altug Alkan, Mar 20 2018
    

Formula

G.f.: 1/(Product_{k>=1} (1-x^(3*k-1))*(1-x^(3*k-2))) = Product_{k>=1} (1 + x^k + x^(2*k)) (where 1 + x + x^2 is the 3rd cyclotomic polynomial).
a(n) = A061197(n, n).
Given g.f. A(x) then B(x) = x*A(x^6)^2 satisfies 0 = f(B(x), B(x^2), B(x^4)) where f(u,v,w) = +v^2 +v*w^2 -v*u^2 +3*u^2*w^2. - Michael Somos, May 28 2006
G.f.: P(x^3)/P(x) where P(x) = Product_{k>=1} (1 - x^k). - Joerg Arndt, Jun 21 2011
a(n) ~ 2*Pi * BesselI(1, sqrt((12*n + 1)/3)*Pi/3) / (3*sqrt(12*n + 1)) ~ exp(2*Pi*sqrt(n)/3) / (6*n^(3/4)) * (1 + (Pi/36 - 9/(16*Pi))/sqrt(n) + (Pi^2/2592 - 135/(512*Pi^2) - 5/64)/n). - Vaclav Kotesovec, Aug 23 2015, extended Jan 13 2017
a(n) = (1/n)*Sum_{k=1..n} A046913(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 21 2017
G.f.: exp(Sum_{k>=1} x^k*(1 + x^k)/(k*(1 - x^(3*k)))). - Ilya Gutkovskiy, Aug 15 2018

Extensions

More terms from Olivier Gérard

A169975 Expansion of Product_{i>=0} (1 + x^(4*i+1)).

Original entry on oeis.org

1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 3, 2, 0, 1, 3, 3, 1, 1, 4, 4, 1, 1, 4, 5, 2, 1, 5, 7, 3, 1, 5, 8, 5, 2, 6, 10, 6, 2, 6, 12, 9, 3, 7, 14, 11, 4, 7, 16, 15, 6, 8, 19, 18, 8, 9, 21, 23, 11, 10, 24, 27, 14, 11, 27, 34, 19, 13, 30, 39, 24, 15, 33, 47, 31, 18, 37, 54, 38
Offset: 0

Views

Author

N. J. A. Sloane, Aug 29 2010

Keywords

Comments

Number of partitions into distinct parts of the form 4*k+1.
In general, if a > 0, b > 0, GCD(a,b) = 1 and g.f. = Product_{k>=0} (1 + x^(a*k + b)), then a(n) ~ exp(Pi*sqrt(n/(3*a))) / (2^(1 + b/a) * (3*a)^(1/4) * n^(3/4)) [Meinardus, 1954]. - Vaclav Kotesovec, Aug 26 2015
Convolution of A147599 and A169975 is A000700. - Vaclav Kotesovec, Jan 18 2017

Crossrefs

Programs

  • Mathematica
    nmax = 200; CoefficientList[Series[Product[(1 + x^(4*k+1)), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 26 2015 *)
    nmax = 200; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[If[Mod[k, 4] == 1, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}]; ], {k, 2, nmax}]; poly (* Vaclav Kotesovec, Jan 18 2017 *)

Formula

G.f.: Sum_{n>=0} (x^(2*n^2 - n) / Product_{k=1..n} (1 - x^(4*k))). - Joerg Arndt, Mar 10 2011
G.f.: G(0)/x where G(k) = 1 - 1/(1 - 1/(1 - 1/(1+(x)^(4*k+1))/G(k+1) )); (recursively defined continued fraction, see A006950). - Sergei N. Gladkovskii, Jan 28 2013
a(n) ~ exp(Pi*sqrt(n)/(2*sqrt(3))) / (2^(7/4) * 3^(1/4) * n^(3/4)) * (1 - (3*sqrt(3)/(4*Pi) + Pi/(192*sqrt(3))) / sqrt(n)). - Vaclav Kotesovec, Aug 26 2015, extended Jan 18 2017

A261612 Expansion of Product_{k>=0} (1 + x^(3*k+1)).

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 2, 1, 1, 2, 1, 1, 3, 2, 1, 3, 3, 2, 4, 4, 2, 4, 5, 3, 5, 7, 4, 5, 8, 6, 7, 10, 7, 7, 12, 10, 9, 14, 12, 10, 16, 16, 13, 19, 19, 15, 22, 24, 19, 25, 28, 22, 29, 35, 28, 33, 40, 33, 38, 48, 41, 44, 55, 48, 51, 66, 59, 58, 74, 69
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 26 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 + x^(3*k+1)), {k, 0, nmax}], {x, 0, nmax}], x]
    nmax = 100; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[If[Mod[k, 3] == 1, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}];], {k, 2, nmax}]; poly (* Vaclav Kotesovec, Jan 13 2017 *)

Formula

a(n) ~ exp(Pi*sqrt(n)/3) / (2^(4/3) * sqrt(3) * n^(3/4)) * (1 - (Pi/144 + 9/(8*Pi)) / sqrt(n)). - Vaclav Kotesovec, Aug 26 2015, extended Jan 16 2017
G.f.: Sum_{k>=0} x^(k*(3*k - 1)/2) / Product_{j=1..k} (1 - x^(3*j)). - Ilya Gutkovskiy, Nov 24 2020

A078181 a(n) = Sum_{d|n, d == 1 (mod 3)} d.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 8, 5, 1, 11, 1, 5, 14, 8, 1, 21, 1, 1, 20, 15, 8, 23, 1, 5, 26, 14, 1, 40, 1, 11, 32, 21, 1, 35, 8, 5, 38, 20, 14, 55, 1, 8, 44, 27, 1, 47, 1, 21, 57, 36, 1, 70, 1, 1, 56, 40, 20, 59, 1, 15, 62, 32, 8, 85, 14, 23, 68, 39, 1, 88, 1, 5, 74, 38, 26, 100, 8, 14, 80, 71, 1
Offset: 1

Views

Author

Vladeta Jovovic, Nov 21 2002

Keywords

Crossrefs

Cf. Sum_{d|n, d==1 mod k} d: A000593 (k=2), this sequence (k=3), A050449 (k=4), A284097 (k=5), A284098 (k=6), A284099 (k=7), A284100 (k=8).

Programs

  • Maple
    A078181 := proc(n)
        a := 0 ;
        for d in numtheory[divisors](n) do
            if modp(d,3) =1 then
                a :=a+d ;
            end if;
        end do:
        a;
    end proc: # R. J. Mathar, May 11 2016
  • Mathematica
    a[n_] := Plus @@ Select[Divisors[n], Mod[#, 3] == 1 &]; Array[a, 100] (* Giovanni Resta, May 11 2016 *)

Formula

G.f.: Sum_{n>=0} (3*n+1)*x^(3*n+1)/(1-x^(3*n+1)).
G.f.: -q*P'/P where P = Product_{n>=0} (1 - q^(3*n+1)). - Joerg Arndt, Aug 03 2011
Conjecture. If a(n)=n+1 then n==1 (mod 3). (Is this easy to settle? It has been verified for n=1,2,3,...,2000.) - John W. Layman, Apr 03 2006
The conjecture is false. The first and only counterexample below 10^8 is a(6800) = 6801 and 6800 == 2 (mod 3). - Lambert Herrgesell (zero815(AT)googlemail.com), May 06 2008
Equals A051731 * [1, 0, 0, 4, 0, 0, 7, 0, 0, 10, ...]. - Gary W. Adamson, Nov 06 2007
A272027(n/3) + a(n) + A078182(n) = A000203(n). - R. J. Mathar, May 25 2020
G.f.: Sum_{n >= 1} x^n*(1 + 2*x^(3*n))/(1 - x^(3*n))^2. - Peter Bala, Dec 19 2021
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/36 = 0.274155... (A353908). - Amiram Eldar, Nov 26 2023

A035386 Number of partitions of n into parts congruent to 2 mod 3.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 1, 2, 1, 3, 2, 3, 3, 4, 4, 6, 5, 7, 7, 9, 9, 12, 11, 15, 15, 18, 19, 23, 23, 29, 29, 35, 37, 43, 45, 53, 55, 64, 68, 78, 82, 95, 99, 114, 121, 136, 145, 164, 173, 196, 208, 232, 248, 276, 294, 328, 349, 386, 413, 456, 486, 537, 572, 629, 673, 737, 787
Offset: 0

Views

Author

Keywords

Comments

a(n) = A116376(3*n). - Reinhard Zumkeller, Feb 15 2006

Crossrefs

Programs

  • Maple
    g:=add(x^(n*(3*n-1))/mul((1-x^(3*k))*(1-x^(3*k-1)), k = 1..n), n = 0..6): gser:=series(g,x,101): seq(coeff(gser,x,n), n = 0..100); # Peter Bala, Feb 02 2021
  • Mathematica
    nmax=100; CoefficientList[Series[Product[1/(1-x^(3*k+2)),{k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 26 2015 *)
    nmax = 100; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 0; Do[If[Mod[k, 3] == 2, Do[poly[[j + 1]] -= poly[[j - k + 1]], {j, nmax, k, -1}];], {k, 2, nmax}]; poly2 = Take[poly, {2, nmax + 1}]; poly3 = 1 + Sum[poly2[[n]]*x^n, {n, 1, Length[poly2]}]; CoefficientList[Series[1/poly3, {x, 0, Length[poly2]}], x] (* Vaclav Kotesovec, Jan 13 2017 *)
    nmax = 50; s = Range[0, nmax/3]*3 + 2;
    Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Aug 05 2020 *)
  • PARI
    {a(n)= if( n<0, 0, polcoeff( 1 / prod( k=1, n, 1 - (k%3==2) * x^k, 1 + x * O(x^n)), n))} /* Michael Somos, Jul 24 2007 */

Formula

a(n) = 1/n*Sum_{k=1..n} A078182(k)*a(n-k), a(0) = 1. - Vladeta Jovovic, Nov 21 2002
Euler transform of period 3 sequence [ 0, 1, 0, ...]. - Michael Somos, Jul 24 2007
a(n) ~ Gamma(2/3) * exp(sqrt(2*n)*Pi/3) / (2^(11/6) * sqrt(3) * Pi^(1/3) * n^(5/6)) * (1 + (Pi/72 - 5/(3*Pi)) / sqrt(2*n)). - Vaclav Kotesovec, Feb 26 2015, extended Jan 24 2017
G.f.: A(x) = Sum_{n >= 0} x^(n*(3*n-1))/Product_{k = 1..n} ((1 - x^(3*k)) *(1 - x^(3*k-1))). (Set z = x^2 and q = x^3 in Mc Laughlin et al., Section 1.3, Entry 7.) - Peter Bala, Feb 02 2021

A035451 Number of partitions of n into parts congruent to 1 mod 4.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 4, 4, 5, 6, 7, 7, 8, 10, 11, 12, 13, 15, 17, 18, 20, 23, 26, 28, 30, 34, 38, 41, 44, 49, 55, 60, 64, 70, 78, 85, 91, 99, 109, 119, 128, 138, 151, 164, 176, 190, 207, 225, 241, 259, 281, 304, 326, 349, 377, 408, 437, 467, 503, 542, 581
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. similar sequences of number of partitions of n into parts congruent to 1 mod m: A000009 (m=2), A035382 (m=3), this sequence (m=4), A109697 (m=5), A109701 (m=6), A109703 (m=7), A277090 (m=8).

Programs

  • Maple
     g := add(x^(n*(4*n-3))/mul((1-x^(4*k))*(1-x^(4*k-3)), k = 1..n), n = 0..5): gser := series(g,x,101): seq(coeff(gser,x,n), n = 0..100); # Peter Bala, Feb 02 2021
  • Mathematica
    nmax=100; CoefficientList[Series[Product[1/(1-x^(4*k+1)),{k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 26 2015 *)
    nmax = 50; kmax = nmax/4; s = Range[0, kmax]*4 + 1;
    Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Aug 03 2020 *)

Formula

G.f.: 1/Product_{k>=0} (1 - x^(4*k+1)). - Vladeta Jovovic, Nov 22 2002
G.f.: Sum_{n>=0} (x^n / Product_{k=1..n} (1 - x^(4*k))). - Joerg Arndt, Apr 07 2011
G.f.: 1 + Sum_{n>=0} (x^(4*n+1) / Product_{k>=n} (1 - x^(4*k+1))) = 1 + Sum_{n>=0} (x^(4*n+1) / Product_{k=0..n} (1 - x^(4*k+1))). - Joerg Arndt, Apr 08 2011
a(n) ~ Gamma(1/4) * exp(Pi*sqrt(n/6)) / (2^(19/8) * 3^(1/8) * n^(5/8) * Pi^(3/4)) * (1 + (Pi/(96*sqrt(6)) - 5*sqrt(3/2)/(16*Pi)) / sqrt(n)). - Vaclav Kotesovec, Feb 26 2015, extended Jan 24 2017
a(n) = (1/n)*Sum_{k=1..n} A050449(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 20 2017
G.f.: Sum_{n>=0} x^(n*(4*n-3))/Product_{k = 1..n} ( (1-x^(4*k))*(1-x^(4*k-3)) ). (Set z = x and q = x^4 in Mc Laughlin et al., Section 1.3, Entry 7.) - Peter Bala, Feb 02 2021

Extensions

Offset changed by N. J. A. Sloane, Apr 11 2010

A109697 Number of partitions of n into parts each equal to 1 mod 5.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 5, 6, 7, 7, 7, 8, 10, 11, 12, 12, 13, 15, 17, 18, 19, 20, 23, 26, 28, 29, 31, 34, 38, 41, 43, 45, 50, 55, 60, 63, 66, 71, 79, 85, 90, 94, 101, 110, 120, 127, 133, 141, 153, 165, 176, 184, 195, 210, 227, 241, 254, 267, 286, 307, 327
Offset: 0

Views

Author

Erich Friedman, Aug 07 2005

Keywords

Examples

			a(11)=3 since 11 = 11 = 6+1+1+1+1+1 = 1+1+1+1+1+1+1+1+1+1+1
		

Crossrefs

Cf. similar sequences of number of partitions of n into parts congruent to 1 mod m: A000009 (m=2), A035382 (m=3), A035451 (m=4), this sequence (m=5), A109701 (m=6), A109703 (m=7), A277090 (m=8).

Programs

Formula

G.f.: 1/product(1-x^(1+5j), j=0..infinity). - Emeric Deutsch, Mar 30 2006
a(n) ~ Gamma(1/5) * exp(Pi*sqrt(2*n/15)) / (2^(8/5) * 3^(1/10) * 5^(2/5) * Pi^(4/5) * n^(3/5)) * (1 - (3*sqrt(3/10)/(5*Pi) + Pi/(120*sqrt(30))) / sqrt(n)). - Vaclav Kotesovec, Feb 27 2015, extended Jan 24 2017
a(n) = (1/n)*Sum_{k=1..n} A284097(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 20 2017
G.f.: Sum_{k>=0} x^k / Product_{j=1..k} (1 - x^(5*j)). - Ilya Gutkovskiy, Jul 17 2019

Extensions

More terms from Emeric Deutsch, Mar 30 2006

A109701 Number of partitions of n into parts each equal to 1 mod 6.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 5, 6, 7, 7, 7, 7, 8, 10, 11, 12, 12, 12, 13, 15, 17, 18, 19, 19, 20, 23, 26, 28, 29, 30, 31, 34, 38, 41, 43, 44, 46, 50, 55, 60, 63, 65, 67, 72, 79, 85, 90, 93, 96, 102, 111, 120, 127, 132, 136, 143, 154, 166, 176, 183, 189, 198
Offset: 0

Views

Author

Erich Friedman, Aug 07 2005

Keywords

Comments

Euler transform of period 6 sequence [ 1, 0, 0, 0, 0, 0, ...]. - Kevin T. Acres, Apr 28 2018

Examples

			a(10)=2 since 10 = 7+1+1+1 = 1+1+1+1+1+1+1+1+1+1
		

Crossrefs

Cf. A284098.
Cf. similar sequences of number of partitions of n into parts congruent to 1 mod m: A000009 (m=2), A035382 (m=3), A035451 (m=4), A109697 (m=5), this sequence (m=6), A109703 (m=7), A277090 (m=8).

Programs

  • Maple
    g:=1/product(1-x^(1+6*j),j=0..20): gser:=series(g,x=0,77): seq(coeff(gser,x,n),n=0..74); # Emeric Deutsch, Apr 14 2006
  • Mathematica
    nmax=100; CoefficientList[Series[Product[1/(1-x^(6*k+1)),{k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 27 2015 *)

Formula

G.f.: 1/Product_{j >= 0} (1-x^(1+6j)). - Emeric Deutsch, Apr 14 2006
a(n) ~ Gamma(1/6) * exp(Pi*sqrt(n)/3) / (4 * sqrt(3) * Pi^(5/6) * n^(7/12)) * (1 - (7/(24*Pi) + Pi/144) / sqrt(n)). - Vaclav Kotesovec, Feb 27 2015, extended Jan 24 2017
a(n) = (1/n)*Sum_{k=1..n} A284098(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 20 2017
G.f.: Sum_{k>=0} x^k / Product_{j=1..k} (1 - x^(6*j)). - Ilya Gutkovskiy, Jul 17 2019

Extensions

Changed offset to 0 and added a(0)=1 by Vaclav Kotesovec, Feb 27 2015

A116373 Number of partitions of n into parts with digital root = 3.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 2, 0, 0, 3, 0, 0, 4, 0, 0, 4, 0, 0, 5, 0, 0, 6, 0, 0, 7, 0, 0, 8, 0, 0, 10, 0, 0, 11, 0, 0, 13, 0, 0, 15, 0, 0, 17, 0, 0, 19, 0, 0, 23, 0, 0, 26, 0, 0, 29, 0, 0, 33, 0, 0, 38, 0, 0, 42, 0, 0, 48, 0, 0, 54, 0, 0, 61, 0, 0, 68, 0, 0, 77, 0, 0, 85, 0, 0, 96
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 12 2006

Keywords

Comments

a(n) = A114102(n) - A116371(n) - A116372(n) - A116374(n) - A116375(n) - A116376(n) - A116377(n) - A116378(n) - A114099(n).

Examples

			a(21) = #{21, 12+3+3+3, 3+3+3+3+3+3+3} = 3.
		

Crossrefs

Cf. A010888.
A147706. [From Reinhard Zumkeller, Nov 11 2008]

Formula

a(n) = A035382(floor(n/3))*0^(n mod 3).

A262947 Expansion of Product_{k>=1} 1/(1-x^(3*k-2))^(3*k-2).

Original entry on oeis.org

1, 1, 1, 1, 5, 5, 5, 12, 22, 22, 32, 60, 80, 93, 161, 231, 282, 404, 616, 775, 1041, 1535, 2037, 2600, 3708, 5029, 6411, 8710, 11968, 15315, 20189, 27444, 35619, 45939, 61605, 80422, 102932, 135481, 177391, 226263, 293561, 382984, 488826, 626558, 812750
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 05 2015

Keywords

Comments

A262946(n)/A262947(n) ~ exp(3*(d1-d2)) * Gamma(1/3)^3 / (2*Pi)^(3/2), where d1 = A263030 and d2 = A263031. - Vaclav Kotesovec, Oct 08 2015

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          `if`(irem(d+3, 3, 'r')=1, 3*r-2, 0),
           d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..45);  # Alois P. Heinz, Oct 05 2015
  • Mathematica
    nmax=60; CoefficientList[Series[Product[1/((1-x^(3k-2))^(3k-2)),{k,1,nmax}],{x,0,nmax}],x]
    nmax=60; CoefficientList[Series[E^Sum[1/j*x^j*(1+2*x^(3*j))/(1-x^(3*j))^2, {j, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ 2^(23/36) * sqrt(Pi) * Zeta(3)^(5/36) * exp(3*d2 + (3/2)^(2/3) * Zeta(3)^(1/3) * n^(2/3)) / (3^(11/36) * Gamma(1/3)^2 * n^(23/36)), where d2 = A263031 = Integral_{x=0..infinity} 1/x*(exp(-x)/(1 - exp(-3*x))^2 - 1/(9*x^2) - 2/(9*x) - 5*exp(-x)/36) = -0.01453742918328403360502029450226209036054149... . - Vaclav Kotesovec, Oct 08 2015
Showing 1-10 of 25 results. Next