cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A003105 Schur's 1926 partition theorem: number of partitions of n into parts 6n+1 or 6n-1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 23, 26, 30, 34, 38, 42, 47, 53, 60, 67, 74, 82, 91, 102, 114, 126, 139, 153, 169, 187, 207, 228, 250, 274, 301, 331, 364, 399, 436, 476, 520, 569, 622, 679, 739, 804, 875, 953, 1038, 1128, 1224, 1327
Offset: 0

Views

Author

Keywords

Comments

There are many (at least 8) equivalent definitions of this sequence (besides the comments below, see also Schur, Alladi, Andrews). - N. J. A. Sloane, Jun 17 2011
Coefficients of replicable function number 72e. - N. J. A. Sloane, Jun 10 2015
Also number of partitions of n into odd parts in which no part appears more than twice, cf. A070048 and A096938. - Vladeta Jovovic, Jan 18 2005
Also number of partitions of n into distinct parts congruent to 1 or 2 modulo 3. (Follows from second g.f.) - N. Sato, Jul 20 2005
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Convolution of A262928 and A261612. - Vaclav Kotesovec, Jan 13 2017
Convolution of A109702 and A109701. - Vaclav Kotesovec, Jan 21 2017

Examples

			G.f: A(x) = 1 + x + x^2 + x^3 + x^4 + 2*x^5 + 2*x^6 + 3*x^7 + 3*x^8 + 3*x^9 + 4*x^10 + ...
T72e = 1/q + q^11 + q^23 + q^35 + q^47 + 2*q^59 + 2*q^71 + 3*q^83 + ...
The logarithm of the g.f. begins:
log(A(x)) = x + x^2/2 + x^3/3 + x^4/4 + 6*x^5/5 + x^6/6 + 8*x^7/7 + x^8/8 + x^9/9 + 6*x^10/10 + 12*x^11/11 + x^12/12 + ... + A186099(n)*x^n/n + ... . - _Paul D. Hanna_, Feb 17 2013
		

References

  • K. Alladi, Refinements of Rogers-Ramanujan type identities. In Special Functions, q-Series and Related Topics (Toronto, ON, 1995), 1-35, Fields Inst. Commun., 14, Amer. Math. Soc., Providence, RI, 1997.
  • G. E. Andrews, Schur's theorem, partitions with odd parts and the Al-Salam-Carlitz polynomials. In q-Series From a Contemporary Perspective (South Hadley, MA, 1998), 45-56, Contemp. Math., 254, Amer. Math. Soc., Providence, RI, 2000.
  • H. P. Robinson, Letter to N. J. A. Sloane, Jan 04 1974.
  • I. Schur, Zur Additiven Zahlentheorie, Ges. Abh., Vol. 2, Springer, pp. 43-50.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a003105 n = p 1 n where
       p k m | m == 0 = 1 | m < k = 0 | otherwise = q k (m-k) + p (k+2) m
       q k m | m == 0 = 1 | m < k = 0 | otherwise = p (k+2) (m-k) + p (k+2) m
    -- Reinhard Zumkeller, Nov 12 2011
  • Maple
    with(combinat);
    A:=proc(n) local i, j, t3, t2, t1;
        t2:=0;
        t1:=firstpart(n);
        for j from 1 to numbpart(n)+2 do
            t3:=1;
            for i from 1 to nops(t1) do
                if (t1[i] mod 6) <> 1 and (t1[i] mod 6) <> 5 then t3:=0; fi;
            od;
            if t3=1 then t2:=t2+1; fi;
            if nops(t1) = 1 then RETURN(t2); fi;
            t1:=nextpart(t1);
        od;
    end;
    # brute-force Maple program from N. J. A. Sloane, Jun 17 2011
  • Mathematica
    max = 63; f[x_] := 1/Product[1 - x^k + x^(2k), {k, 0, max}]; CoefficientList[ Series[ f[x], {x, 0, max}], x] (* Jean-François Alcover, Dec 01 2011, after Vladeta Jovovic *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x] / QPochhammer[ -x^3, x^3], {x, 0, n}]; (* Michael Somos, Jul 05 2014 *)
    nmax = 100; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[If[Mod[k, 3] != 0, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}];], {k, 2, nmax}]; poly (* Vaclav Kotesovec, Jan 13 2017 *)
    nmax = 63; kmax = nmax/6;
    s = Flatten[{Range[0, kmax]*6 + 1}~Join~{Range[kmax]*6 - 1}];
    Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Jul 31 2020 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A) / (eta(x + A) * eta(x^6 + A)), n))}; /* Michael Somos, Jan 09 2005 */
    
  • PARI
    {S(n,x)=sumdiv(n,d,d*(1-x^d)^(n/d))}
    {a(n)=polcoeff(exp(sum(k=1,n,S(k,x)*x^k/k)+x*O(x^n)),n)}
    for(n=0,60,print1(a(n),", "))
    /* Paul D. Hanna, Feb 17 2013 */
    

Formula

G.f.: 1/Product_{k>=0} (1-x^(6*k+1))*(1-x^(6*k+5)) = Product_{k>=0} (1+x^(3*k+1))*(1+x^(3*k+2)) = 1/Product_{k>=0} (1-x^k+x^(2*k)). - Vladeta Jovovic, Jun 08 2003
Expansion of chi(-x^3) / chi(-x) in powers of x where chi() is a Ramanujan theta function. - Michael Somos, Mar 04 2012
Expansion of f(x, x^2) / f(-x^3) = f(-x^6) / f(-x, -x^5) in powers of x where f() is Ramanujan theta function. - Michael Somos, Jul 05 2014
Expansion of q^(1/12) * eta(q^2) * eta(q^3) / (eta(q) * eta(q^6)) in powers of q. - Michael Somos, Jan 09 2005
Euler transform of period 6 sequence [1, 0, 0, 0, 1, 0, ...]. - Michael Somos, Jan 09 2005
Given g.f. A(x), then B(q) = (A(q^12) / q)^4 satisfies 0 = f(B(q), B(q^2)) where f(u, v) = u*v^4 + (1 - u^3) * v^3 + 6*u^2*v^2 + (u^4 - u)*v + u^3. - Michael Somos, Jan 09 2005
The logarithmic derivative equals A186099. - Paul D. Hanna, Feb 17 2013
G.f.: exp( Sum_{n>=1} A186099(n) * x^n/n ) where A186099(n) = sum of divisors of n congruent to 1 or 5 mod 6. - Paul D. Hanna, Feb 17 2013
G.f.: exp( Sum_{n>=1} S(n,x) * x^n/n ) where S(n,x) = Sum_{d|n} d*(1-x^d)^(n/d). - Paul D. Hanna, Feb 17 2013
a(n) ~ Pi*sqrt(2) / sqrt(3*(12*n-1)) * BesselI(1, Pi*sqrt(12*n-1) / (3*sqrt(6))) ~ exp(Pi*sqrt(2*n)/3) / (2^(5/4) * sqrt(3) * n^(3/4)) * (1 - (9/(8*Pi) + Pi/36)/sqrt(2*n) + (5 - 135/(4*Pi^2) + Pi^2/81)/(64*n)). - Vaclav Kotesovec, Aug 23 2015, extended Jan 09 2017
a(n) = (1/n)*Sum_{k=1..n} A186099(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 21 2017

Extensions

More terms from Vladeta Jovovic, Jun 08 2003

A169975 Expansion of Product_{i>=0} (1 + x^(4*i+1)).

Original entry on oeis.org

1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 3, 2, 0, 1, 3, 3, 1, 1, 4, 4, 1, 1, 4, 5, 2, 1, 5, 7, 3, 1, 5, 8, 5, 2, 6, 10, 6, 2, 6, 12, 9, 3, 7, 14, 11, 4, 7, 16, 15, 6, 8, 19, 18, 8, 9, 21, 23, 11, 10, 24, 27, 14, 11, 27, 34, 19, 13, 30, 39, 24, 15, 33, 47, 31, 18, 37, 54, 38
Offset: 0

Views

Author

N. J. A. Sloane, Aug 29 2010

Keywords

Comments

Number of partitions into distinct parts of the form 4*k+1.
In general, if a > 0, b > 0, GCD(a,b) = 1 and g.f. = Product_{k>=0} (1 + x^(a*k + b)), then a(n) ~ exp(Pi*sqrt(n/(3*a))) / (2^(1 + b/a) * (3*a)^(1/4) * n^(3/4)) [Meinardus, 1954]. - Vaclav Kotesovec, Aug 26 2015
Convolution of A147599 and A169975 is A000700. - Vaclav Kotesovec, Jan 18 2017

Crossrefs

Programs

  • Mathematica
    nmax = 200; CoefficientList[Series[Product[(1 + x^(4*k+1)), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 26 2015 *)
    nmax = 200; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[If[Mod[k, 4] == 1, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}]; ], {k, 2, nmax}]; poly (* Vaclav Kotesovec, Jan 18 2017 *)

Formula

G.f.: Sum_{n>=0} (x^(2*n^2 - n) / Product_{k=1..n} (1 - x^(4*k))). - Joerg Arndt, Mar 10 2011
G.f.: G(0)/x where G(k) = 1 - 1/(1 - 1/(1 - 1/(1+(x)^(4*k+1))/G(k+1) )); (recursively defined continued fraction, see A006950). - Sergei N. Gladkovskii, Jan 28 2013
a(n) ~ exp(Pi*sqrt(n)/(2*sqrt(3))) / (2^(7/4) * 3^(1/4) * n^(3/4)) * (1 - (3*sqrt(3)/(4*Pi) + Pi/(192*sqrt(3))) / sqrt(n)). - Vaclav Kotesovec, Aug 26 2015, extended Jan 18 2017

A035382 Number of partitions of n into parts congruent to 1 mod 3.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 3, 4, 4, 5, 6, 7, 8, 10, 11, 13, 15, 17, 19, 23, 26, 29, 33, 38, 42, 48, 54, 61, 68, 77, 85, 96, 107, 119, 132, 148, 163, 181, 201, 223, 245, 272, 299, 330, 363, 400, 438, 483, 529, 580, 635, 697, 760, 832, 908, 992, 1081, 1180, 1283, 1399, 1521
Offset: 0

Views

Author

Keywords

Comments

a(n) = A116373(3*n). - Reinhard Zumkeller, Feb 15 2006

Examples

			a(3) = 1 because we have [1,1,1];
a(4) = 2 because we have [1,1,1,1] and [4];
a(9) = 4 because we have [7,1,1], [4,4,1], [4,1,1,1,1,1] and [1,1,1,1,1,1,1,1,1].
1 + x + x^2 + x^3 + 2*x^4 + 2*x^5 + 2*x^6 + 3*x^7 + 4*x^8 + 4*x^9 + ...
		

Crossrefs

Programs

  • Maple
    g:= 1/product(1-x^(1+3*j), j=0..50): gser:= series(g, x=0, 64): seq(coeff(gser, x, n), n=0..61); # Emeric Deutsch, Mar 30 2006
    # second Maple program
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, b(n, i-3) +`if`(i>n, 0, b(n-i, i))))
        end:
    a:= n-> b(n, 3*iquo(n, 3)+1):
    seq(a(n), n=0..100);  # Alois P. Heinz, Oct 03 2012
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-3] + If[i>n, 0, b[n-i, i]]]]; a[n_] := b[n, 3*Quotient[n, 3]+1]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Mar 23 2015, after Alois P. Heinz *)
    nmax = 100; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = -1; Do[If[Mod[k, 3] == 1, Do[poly[[j + 1]] -= poly[[j - k + 1]], {j, nmax, k, -1}];], {k, 2, nmax}]; poly2 = Take[poly, {2, nmax + 1}]; poly3 = 1 + Sum[poly2[[n]]*x^n, {n, 1, Length[poly2]}]; CoefficientList[Series[1/poly3, {x, 0, Length[poly2]}], x] (* Vaclav Kotesovec, Jan 13 2017 *)
    nmax = 50; s = Range[0, nmax/3]*3 + 1;
    Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Aug 05 2020 *)

Formula

a(n) = 1/n*Sum_{k=1..n} A078181(k)*a(n-k), a(0) = 1.
G.f.: 1/prod(j>=0, 1-x^(1+3*j) ). - Emeric Deutsch, Mar 30 2006
From Joerg Arndt, Oct 02 2012: (Start)
G.f.: sum(n>=0, q^n/prod(k=1..n, 1-q^(3*k)) ); this is the special case of R=1, M=3 of the g.f. sum(n>=0, q^(R*n)/prod(k=1..n, 1-q^(M*k) ) ) for partitions into parts R mod M (where R!=0).
G.f. sum(n>=0, q^(3*n^2-2*n) / prod(k=0..n-1, (1-q^(3*k+3))*(1-q^(3*k+1))) ); this is the special case of R=1, M=3 of the g.f. sum(n>=0, q^(M*n^2+(R-M)*n) / prod(k=0..n-1, (1-q^(M*k+M))*(1-q^(M*k+R))) ) for partitions into parts R mod M (where R!=0). (See Fxtbook link)
(End)
a(n) ~ Gamma(1/3) * exp(sqrt(2*n)*Pi/3) / (2*sqrt(3) * (2*Pi*n)^(2/3)) * (1 + (Pi/72 - 2/(3*Pi)) / sqrt(2*n)). - Vaclav Kotesovec, Feb 26 2015, extended Jan 24 2017
Euler transform of period 3 sequence [ 1, 0, 0, ...]. - Kevin T. Acres, Apr 28 2018

A262928 Expansion of Product_{k>=0} (1 + x^(3*k+2)).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 2, 1, 1, 2, 1, 1, 3, 1, 2, 3, 1, 3, 4, 2, 4, 4, 2, 5, 5, 3, 7, 5, 4, 8, 6, 6, 10, 7, 7, 12, 8, 10, 14, 9, 12, 16, 11, 16, 19, 13, 19, 21, 16, 24, 25, 19, 28, 28, 23, 35, 32, 28, 40, 36, 34, 48, 42, 41, 55, 47, 49, 65, 55
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 04 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=100; CoefficientList[Series[Product[(1+x^(3*k-1)),{k,1,nmax}],{x,0,nmax}],x]
    nmax = 100; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 0; Do[If[Mod[k, 3] == 2, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}];], {k, 2, nmax}]; poly (* Vaclav Kotesovec, Jan 13 2017 *)

Formula

a(n) ~ exp(sqrt(n)*Pi/3) / (2^(5/3)*sqrt(3)*n^(3/4)) * (1 - (Pi/144 + 9/(8*Pi)) / sqrt(n)). - Vaclav Kotesovec, Oct 04 2015, extended Jan 16 2017
G.f.: Sum_{k>=0} x^(k*(3*k + 1)/2) / Product_{j=1..k} (1 - x^(3*j)). - Ilya Gutkovskiy, Nov 24 2020

A281243 Expansion of Product_{k>=1} (1 + x^(5*k-1)).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 2, 1, 0, 0, 1, 2, 1, 0, 0, 1, 3, 1, 0, 0, 2, 3, 1, 0, 0, 3, 4, 1, 0, 1, 4, 4, 1, 0, 1, 5, 5, 1, 0, 2, 7, 5, 1, 0, 3, 8, 6, 1, 0, 5, 10, 6, 1, 1, 6, 12, 7, 1, 1, 9, 14, 7, 1, 2, 11, 16, 8, 1
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 18 2017

Keywords

Comments

Convolution of this sequence and A280454 is A203776.

Crossrefs

Programs

  • Mathematica
    nmax = 200; CoefficientList[Series[Product[(1 + x^(5*k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 200; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 0; Do[If[Mod[k, 5] == 4, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}]; ], {k, 2, nmax}]; poly

Formula

a(n) ~ exp(sqrt(n/15)*Pi) / (2^(9/5)*15^(1/4)*n^(3/4)) * (1 + (Pi/(240*sqrt(15)) - 3*sqrt(15)/(8*Pi)) / sqrt(n)). - Vaclav Kotesovec, Jan 18 2017, extended Jan 24 2017
G.f.: Sum_{k>=0} x^(k*(5*k + 3)/2) / Product_{j=1..k} (1 - x^(5*j)). - Ilya Gutkovskiy, Nov 24 2020

A280454 Expansion of Product_{k>=0} (1 + x^(5*k+1)).

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 2, 1, 0, 0, 1, 2, 1, 0, 0, 1, 3, 2, 0, 0, 1, 3, 3, 1, 0, 1, 4, 4, 1, 0, 1, 4, 5, 2, 0, 1, 5, 7, 3, 0, 1, 5, 8, 5, 1, 1, 6, 10, 6, 1, 1, 6, 12, 9, 2, 1, 7, 14, 11, 3, 1, 7, 16, 15, 5, 1, 8, 19, 18, 7, 2, 8, 21, 23, 10, 2, 9, 24, 27, 13, 3, 9, 27, 34, 18, 4, 10, 30, 39, 23, 6, 10
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 03 2017

Keywords

Comments

Number of partitions of n into distinct parts congruent to 1 mod 5.
Convolution of A281243 and A280454 is A203776. - Vaclav Kotesovec, Jan 18 2017

Examples

			a(27) = 3 because we have [26, 1], [21, 6] and [11, 16].
		

Crossrefs

Programs

  • Mathematica
    nmax = 102; CoefficientList[Series[Product[(1 + x^(5 k + 1)), {k, 0, nmax}], {x, 0, nmax}], x]
    nmax = 200; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[If[Mod[k, 5] == 1, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}]; ], {k, 2, nmax}]; poly (* Vaclav Kotesovec, Jan 18 2017 *)

Formula

G.f.: Product_{k>=0} (1 + x^(5*k+1)).
a(n) ~ exp(Pi*sqrt(n)/sqrt(15))/(2*2^(1/5)*15^(1/4)*n^(3/4)) * (1 + (Pi/(240*sqrt(15)) - 3*sqrt(15)/(8*Pi)) / sqrt(n)). - Ilya Gutkovskiy, Jan 03 2017, extended by Vaclav Kotesovec, Jan 24 2017

A281245 Expansion of Product_{k>=1} (1 + x^(7*k-1)).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 1, 3, 1, 0, 0, 0, 0, 2, 3, 1, 0, 0, 0, 0, 3, 4, 1, 0, 0, 0, 1, 4, 4, 1, 0, 0, 0, 1, 5, 5, 1, 0, 0, 0, 2, 7, 5, 1, 0, 0, 0
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 18 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 200; CoefficientList[Series[Product[(1 + x^(7*k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 200; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 0; Do[If[Mod[k, 7] == 6, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}]; ], {k, 2, nmax}]; poly

Formula

a(n) ~ exp(sqrt(n/21)*Pi) / (2^(13/7)*21^(1/4)*n^(3/4)) * (1 + (13*Pi/(336*sqrt(21)) - 3*sqrt(21)/(8*Pi)) / sqrt(n)). - Vaclav Kotesovec, Jan 18 2017, extended Jan 24 2017
G.f.: Sum_{k>=0} x^(k*(7*k + 5)/2) / Product_{j=1..k} (1 - x^(7*j)). - Ilya Gutkovskiy, Nov 24 2020

A280457 Expansion of Product_{k>=0} (1 + x^(7*k+1)).

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 1, 3, 2, 0, 0, 0, 0, 1, 3, 3, 1, 0, 0, 0, 1, 4, 4, 1, 0, 0, 0, 1, 4, 5, 2, 0, 0, 0, 1, 5, 7, 3, 0, 0, 0, 1, 5, 8, 5, 1, 0, 0, 1, 6, 10, 6, 1, 0, 0, 1, 6, 12, 9, 2, 0, 0, 1, 7, 14, 11, 3, 0, 0, 1, 7, 16, 15, 5
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 03 2017

Keywords

Comments

Number of partitions of n into distinct parts congruent to 1 mod 7.

Examples

			a(37) = 3 because we have [36, 1], [29, 8] and [22, 15].
		

Crossrefs

Programs

  • Mathematica
    nmax = 105; CoefficientList[Series[Product[(1 + x^(7 k + 1)), {k, 0, nmax}], {x, 0, nmax}], x]
    nmax = 200; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[If[Mod[k, 7] == 1, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}]; ], {k, 2, nmax}]; poly (* Vaclav Kotesovec, Jan 18 2017 *)

Formula

G.f.: Product_{k>=0} (1 + x^(7*k+1)).
a(n) ~ exp(Pi*sqrt(n)/sqrt(21))/(2*2^(1/7)*21^(1/4)*n^(3/4)) * (1 + (13*Pi/(336*sqrt(21)) - 3*sqrt(21)/(8*Pi)) / sqrt(n)). - Ilya Gutkovskiy, Jan 03 2017, extended by Vaclav Kotesovec, Jan 24 2017

A281244 Expansion of Product_{k>=1} (1 + x^(6*k-1)).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 3, 1, 0, 0, 0, 2, 3, 1, 0, 0, 0, 3, 4, 1, 0, 0, 1, 4, 4, 1, 0, 0, 1, 5, 5, 1, 0, 0, 2, 7, 5, 1, 0, 0, 3, 8, 6, 1, 0, 0, 5, 10, 6, 1, 0, 1
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 18 2017

Keywords

Comments

Convolution of this sequence and A280456 is A098884.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          [0$5, 1, 0$4, -1, 1][1+irem(d, 12)]*d, d=
           numtheory[divisors](j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Jan 18 2017
  • Mathematica
    nmax = 200; CoefficientList[Series[Product[(1 + x^(6*k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 200; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 0; Do[If[Mod[k, 6] == 5, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}]; ], {k, 2, nmax}]; poly

Formula

a(n) ~ exp(sqrt(n/2)*Pi/3) / (2^(25/12)*sqrt(3)*n^(3/4)) * (1 + (Pi/144 - 9/(4*Pi)) / sqrt(2*n)).
G.f.: Sum_{k>=0} x^(k*(3*k + 2)) / Product_{j=1..k} (1 - x^(6*j)). - Ilya Gutkovskiy, Nov 24 2020

A262924 Expansion of Product_{k>=1} (1 + x^(3*k-1))^(3*k-1) * (1 + x^(3*k-2))^(3*k-2).

Original entry on oeis.org

1, 1, 2, 2, 5, 10, 13, 25, 35, 57, 87, 134, 211, 306, 458, 684, 996, 1465, 2129, 3073, 4411, 6288, 8977, 12707, 17913, 25185, 35231, 49078, 68228, 94490, 130408, 179425, 246121, 336681, 459239, 624842, 847986, 1147728, 1549773, 2087972, 2806455, 3764136
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 04 2015

Keywords

Comments

Convolution of A262948 and A262949.

Crossrefs

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[(1 + x^(3*k-1))^(3*k-1)*(1 + x^(3*k-2))^(3*k-2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(3*Zeta(3)^(1/3)*n^(2/3)/2) * Zeta(3)^(1/6) / (2^(1/3) * sqrt(3*Pi) * n^(2/3)).
Showing 1-10 of 24 results. Next