cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: N. Sato

N. Sato's wiki page.

N. Sato has authored 5 sequences.

A145874 Number of permutations of the numbers 1, 2, ..., n such that for all 1 <= k <= n the average of the first k numbers is at least the average of all n numbers.

Original entry on oeis.org

1, 1, 3, 7, 35, 139, 1001, 5701, 53109, 402985, 4605271
Offset: 1

Author

N. Sato, Oct 22 2008

Keywords

Comments

Same as A147681.

Examples

			For n = 3, the 3 permutations are (2,3,1), (3,1,2) and (3,2,1).
		

Programs

  • PARI
    a(n) = {nbok = 0; avg = (n+1)/2; for (j = 1, n!, perm = numtoperm(n, j); ok = 1; for (k = 1, n, if (sum(j=1, k, perm[j])/k < avg, ok = 0; break;);); if (ok, nbok++);); nbok;} \\ Michel Marcus, Aug 12 2013

Extensions

a(7)-a(11) from Michel Marcus, Aug 12 2013

A108932 Number of partitions of n into parts that are congruent to 1, 5 or 6 mod 8.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 3, 3, 4, 5, 6, 7, 8, 10, 12, 13, 15, 18, 21, 24, 27, 31, 36, 41, 46, 52, 60, 68, 76, 86, 97, 109, 122, 136, 153, 172, 191, 212, 237, 264, 293, 325, 360, 400, 443, 488, 539, 596, 657, 723, 796, 876, 963, 1057, 1159, 1272, 1395, 1526, 1669, 1827
Offset: 0

Author

N. Sato, Jul 20 2005

Keywords

Comments

Number of partitions of n into distinct parts that are not congruent to 3 mod 4 and the number of partitions of n into odd parts such that each part which is congruent to 3 mod 4 occurs an even number of times.

Programs

  • PARI
    {a(n)=if(n< 0, 0, polcoeff( 1/prod(k=1,n, 1-[0,1,0,0,0,1,1,0][k%8+1]*x^k, 1+x*O(x^n)), n))} /* Michael Somos, Jul 29 2005 */

Formula

G.f.: prod_{k >= 0} 1/{(1 - x^{8k + 1})(1 - x^{8k + 5})(1 - x^{8k + 6})}.
Euler transform of period 8 sequence [1, 0, 0, 0, 1, 1, 0, 0, ...]. - Michael Somos, Jul 29 2005

A093997 Number of partitions of n with an odd number of distinct Fibonacci parts.

Original entry on oeis.org

0, 1, 1, 1, 0, 1, 1, 0, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 3, 1, 2, 2, 1, 2, 2, 2, 2, 0, 2, 2, 1, 3, 2, 3, 2, 1, 3, 2, 2, 3, 1, 2, 3, 2, 3, 1, 2, 2, 0, 3, 2, 2, 3, 2, 3, 3, 2, 4, 2, 2, 4, 1, 3, 3, 2, 4, 2, 3, 3, 1, 3, 3, 3, 4, 1, 3, 3, 1, 4, 2, 2, 2, 1, 3, 2, 2, 4, 2, 3, 4, 2, 4, 3, 3, 5, 1, 4, 4, 2
Offset: 0

Author

N. Sato, May 24 2004

Keywords

Crossrefs

Cf. A000119.

Programs

  • Maple
    F:= combinat[fibonacci]:
    b:= proc(n, i, t) option remember; `if`(n=0, t, `if`(i<2, 0,
           b(n, i-1, t)+`if`(F(i)>n, 0, b(n-F(i), i-1, 1-t))))
        end:
    a:= proc(n) local j; for j from ilog[(1+sqrt(5))/2](n+1)
           while F(j+1)<=n do od; b(n, j, 0)
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Jul 11 2013
  • Mathematica
    Take[ CoefficientList[ Expand[ Product[1 + x^Fibonacci[k], {k, 2, 13}]/2 - Product[1 - x^Fibonacci[k], {k, 2, 13}]/2], x], 105] (* Robert G. Wilson v, May 29 2004 *)

Formula

G.f.: (Product_{k>=2} (1 + x^{F_k}) - Product_{k>=2} (1 - x^{F_k}))/2.

Extensions

Edited and extended by Robert G. Wilson v, May 29 2004

A093996 G.f.: Product_{k>=2} (1 - x^{F_k}) where F_k are the Fibonacci numbers.

Original entry on oeis.org

1, -1, -1, 0, 1, 0, 0, 1, -1, 0, 0, 1, -1, -1, 1, 0, 0, 0, 1, -1, -1, 0, 1, 1, -1, 0, 0, 0, 0, 1, -1, -1, 0, 1, 0, 0, 1, 0, -1, -1, 1, 0, 0, 0, 0, 0, 0, 1, -1, -1, 0, 1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, -1, 0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, 0, 1, 0, 0, 1, -1, 0, 0, 1, -1, -1, 1, 0, 0, 0, 1, -1, -1, 1, 0, 0, -1, 1, 0, 0, 1
Offset: 0

Author

N. Sato, May 24 2004

Keywords

Comments

Number of partitions of n with an even number of distinct Fibonacci parts minus the number of partitions of n with an odd number of distinct Fibonacci parts.
Every term is -1, 0 or 1.

Examples

			G.f. = 1 - x - x^2 + x^4 + x^7 - x^8 + x^11 - x^12 - x^13 + x^14 + x^18 - x^19 - x^20 + x^22 + x^23 - x^24 + x^29 - x^30 - x^31 + x^33 + x^36 - x^38 - x^39 + x^40 + x^47 - ... - _N. J. A. Sloane_, May 30 2009
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 115); Coefficients(R!( (&*[1-x^Fibonacci(j): j in [2..13]]) )); // G. C. Greubel, Dec 27 2021
    
  • Mathematica
    Take[ CoefficientList[ Expand[ Product[1 - x^Fibonacci[k], {k, 2, 13}]], x], 105] (* Robert G. Wilson v, May 29 2004 *)
    nn = 11; Take[CoefficientList[Expand[Product[1 - x^Fibonacci[n], {n, 2, nn}]], x], Fibonacci[nn+1]] (* T. D. Noe, Feb 27 2014 *)
  • Sage
    [( product( 1-x^fibonacci(j) for j in (2..14) ) ).series(x,n+1).list()[n] for n in (0..115)] # G. C. Greubel, Dec 27 2021

Formula

Ardila gives a fast recurrence.
a(n) = A093998(n) - A093997(n).

Extensions

Edited and extended by Robert G. Wilson v, May 29 2004

A093998 Number of partitions of n with an even number of distinct Fibonacci parts.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 2, 1, 2, 1, 2, 1, 0, 2, 2, 2, 2, 1, 2, 2, 1, 3, 1, 1, 2, 1, 2, 2, 2, 3, 1, 2, 3, 1, 3, 2, 2, 3, 1, 3, 2, 1, 3, 2, 2, 2, 1, 2, 2, 2, 4, 1, 3, 3, 1, 4, 3, 3, 3, 1, 3, 3, 2, 4, 2, 3, 3, 1, 4, 2, 2, 4, 2, 3, 3, 2, 3, 2, 2, 3, 0, 2, 3, 2, 4, 2, 4, 3, 1, 5, 3, 3, 4, 2, 4, 4, 3
Offset: 0

Author

N. Sato, May 24 2004

Keywords

Crossrefs

Programs

  • Maple
    F:= combinat[fibonacci]:
    b:= proc(n, i, t) option remember; `if`(n=0, t, `if`(i<2, 0,
           b(n, i-1, t)+`if`(F(i)>n, 0, b(n-F(i), i-1, 1-t))))
        end:
    a:= proc(n) local j; for j from ilog[(1+sqrt(5))/2](n+1)
           while F(j+1)<=n do od; b(n, j, 1)
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Jul 11 2013
  • Mathematica
    Take[ CoefficientList[ Expand[ Product[1 + x^Fibonacci[k], {k, 2, 13}]/2 + Product[1 - x^Fibonacci[k], {k, 2, 13}]/2], x], 105] (* Robert G. Wilson v, May 29 2004 *)

Formula

G.f.: (Product_{k>=2} (1 + x^{F_k}) + Product_{k>=2} (1 - x^{F_k}))/2.

Extensions

Edited and extended by Robert G. Wilson v, May 29 2004