cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A298949 Expansion of Product_{k>=2} 1/(1 + x^{F_k}) where F_k are the Fibonacci numbers.

Original entry on oeis.org

1, -1, 0, -1, 2, -2, 2, -2, 2, -3, 4, -3, 3, -5, 5, -5, 7, -7, 7, -9, 10, -11, 12, -12, 13, -16, 18, -17, 18, -21, 23, -25, 26, -27, 29, -32, 35, -36, 37, -40, 43, -46, 50, -51, 52, -58, 63, -64, 67, -71, 73, -79, 85, -85, 88, -96, 100, -104, 111, -113, 117
Offset: 0

Views

Author

Seiichi Manyama, Jan 30 2018

Keywords

Crossrefs

Formula

Convolution inverse of A000119.

A104767 a(n)=n for n <= 3, a(n) = 2a(n-1) - 2a(n-2) + 2a(n-3) for n >= 4.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 10, 16, 24, 36, 56, 88, 136, 208, 320, 496, 768, 1184, 1824, 2816, 4352, 6720, 10368, 16000, 24704, 38144, 58880, 90880, 140288, 216576, 334336, 516096, 796672, 1229824, 1898496, 2930688, 4524032, 6983680, 10780672, 16642048, 25690112, 39657472
Offset: 0

Views

Author

Don N. Page, Oct 13 2005

Keywords

Comments

Also a(n) for n > 0 is the number of terms in the expansion of (x - y) * (x - y) * (x^2 - y^2) * (x^3 - y^3) * ... * (x^F_n-1 - y^F_n-1), where F_n is the n-th Fibonacci number. In this definition one can take y=1. In other words the sequence gives the number of nonzero terms in the polynomial Product {k=1..n-1}, (1 - x^F_k). - Robert G. Wilson v, May 12 2013
Also a(n) for n > 0 is the number of terms in the expansion of Product_{k=2..n+1} (x^F_k - y^F_k) with coefficient +1 (same with -1). We can take y=1 and the Product_{k=2..n+1} (x^F_k - 1) has a(n) terms with coefficient +1 and same with -1. Note that no coefficient is greater than 1 in absolute value. - Michael Somos, May 17 2018

Examples

			From _Michael Somos_, May 17 2018: (Start)
For n=3, (x - y) * (x - y) = x^2 - 2*x*y + y^2 has a(3) = 3 terms.
For n=4, (x - y) * (x - y) * (x^2 - y^2) = x^4 - 2*x^3*y + 2*x*y^3 - y^4 has a(4) = 4 terms.
for n=2, (x - y) * (x^2 - y^2) = x^3 - x^2*y - x*y^2 + y^3 has a(2) = 2 terms with + sign and also with - sign.
For n=3, (x - y) * (x^2 - y^2) * (x^3 - y^3) = x^6 - x^5*y - x^4*y^2 + x^2*y^4 + x*y^5 - y^6 has a(3) = 3 terms with + sign and also with - sign. (End)
		

Crossrefs

Cf. A093996.

Programs

  • GAP
    a:=[0,1,2,3,4];; for n in [5..50] do a[n]:=2*a[n-1]-2*a[n-2]+2*a[n-3]; od; a; # Muniru A Asiru, May 17 2018
    
  • Maple
    f:=proc(n) option remember; if n <= 4 then RETURN(n); fi; 2*f(n-4)+f(n-1); end;
  • Mathematica
    a[n_] := a[n] = If[n < 4, n, 2a[n - 1] - 2a[n - 2] + 2a[n - 3]]; Table[ a[n], {n, 0, 39}] (* Robert G. Wilson v *)
    Join[{0}, LinearRecurrence[{2, -2, 2}, {1, 2, 3}, 41]] (* Robert G. Wilson v, May 12 2013 *)
    Join[{0}, LinearRecurrence[{1, 0, 0, 2}, {1, 2, 3, 4}, 41]] (* Robert G. Wilson v, May 12 2013 *)
    a[n_] := Length@ ExpandAll@ Product[1 - x^Fibonacci[k], {k, n-1}]; a[1] = 1; (* Robert G. Wilson v, May 12 2013 *)
    nxt[{a_,b_,c_}]:={b,c,2c-2b+2a}; Join[{0},NestList[nxt,{1,2,3},40][[All,1]]] (* Harvey P. Dale, Nov 30 2021 *)
  • PARI
    a=vector(100); a[1]=1;a[2]=2;a[3]=3; for(n=4, #a, a[n] = 2*a[n-1]-2*a[n-2]+2*a[n-3]); concat(0,a) \\ Altug Alkan, May 18 2018

Formula

a(n) = n for n <= 4; for n >= 5, a(n) = 2a(n-4) + a(n-1).
G.f.: (x + x^3)/(-2*x^3 + 2*x^2 - 2*x + 1). a(n) = A077943(n-3) + A077943(n-1).

Extensions

More terms from Robert G. Wilson v, Oct 14 2005

A151661 Exponents in g.f. Product_{k>=2} (1 - x^{F_k}) where F_k are the Fibonacci numbers.

Original entry on oeis.org

0, 1, 2, 4, 7, 8, 11, 12, 13, 14, 18, 19, 20, 22, 23, 24, 29, 30, 31, 33, 36, 38, 39, 40, 47, 48, 49, 51, 54, 55, 58, 59, 62, 64, 65, 66, 76, 77, 78, 80, 83, 84, 87, 88, 89, 90, 94, 95, 96, 97, 100, 101, 104, 106, 107, 108, 123, 124, 125, 127, 130, 131, 134, 135, 136, 137, 141, 142
Offset: 1

Views

Author

N. J. A. Sloane, May 30 2009

Keywords

Examples

			1 - x - x^2 + x^4 + x^7 - x^8 + x^11 - x^12 - x^13 + x^14 + x^18 - x^19 - x^20 + x^22 + x^23 - x^24 + x^29 - x^30 - x^31 + x^33 + x^36 - x^38 - x^39 + x^40 + x^47 - ...
		

Crossrefs

Programs

  • Mathematica
    kmax = 150; Exponent[#, x]& /@ List @@ (Product[1 - x^Fibonacci[k], {k, 2, Ceiling[FindRoot[Fibonacci[x] == kmax, {x, 5}][[1, 2]]]}] + O[x]^kmax // Normal) (* Jean-François Alcover, Oct 08 2018 *)

A357380 Expansion of Product_{k>=1} (1 - x^Fibonacci(k)).

Original entry on oeis.org

1, -2, 0, 1, 1, -1, 0, 1, -2, 1, 0, 1, -2, 0, 2, -1, 0, 0, 1, -2, 0, 1, 1, 0, -2, 1, 0, 0, 0, 1, -2, 0, 1, 1, -1, 0, 1, -1, -1, 0, 2, -1, 0, 0, 0, 0, 0, 1, -2, 0, 1, 1, -1, 0, 1, -2, 1, 0, 1, -2, 1, 0, -1, 1, 1, 0, -2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, -2, 0, 1, 1, -1, 0, 1, -2, 1, 0, 1, -2, 0, 2, -1, 0, 0, 1, -2, 0, 2, -1, 0, -1
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 26 2022

Keywords

Comments

Convolution inverse of A007000.
First differences of A093996.

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 - x^Fibonacci[k]), {k, 1, 21}], {x, 0, nmax}], x]

A329003 Numbers k such that the coefficient of x^k in the expansion of Product_{j>=2} (1 - x^Fibonacci(j)) is zero.

Original entry on oeis.org

3, 5, 6, 9, 10, 15, 16, 17, 21, 25, 26, 27, 28, 32, 34, 35, 37, 41, 42, 43, 44, 45, 46, 50, 52, 53, 56, 57, 60, 61, 63, 67, 68, 69, 70, 71, 72, 73, 74, 75, 79, 81, 82, 85, 86, 91, 92, 93, 98, 99, 102, 103, 105, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 01 2019

Keywords

Comments

Numbers k such that number of partitions of k into an even number of distinct Fibonacci parts equals number of partitions of k into an odd number of distinct Fibonacci parts (1 counted as single Fibonacci number).
Positions of 0's in A093996.
Complement of A151661.

Crossrefs

Programs

  • Mathematica
    Flatten[Position[Rest[CoefficientList[Series[Product[(1 - x^Fibonacci[j]), {j, 2, 21}], {x, 0, 130}], x]], 0]]

A357520 Expansion of Product_{k>=0} (1 - x^Lucas(k)).

Original entry on oeis.org

1, -1, -1, 0, 0, 2, 0, -1, 0, 0, 1, -1, -1, 1, 0, 1, -1, -1, 0, 1, 1, -1, 0, 0, 0, 1, -1, -1, 0, 0, 2, 0, 0, -1, -1, 1, 0, 0, 0, 0, 1, -1, -1, 0, 0, 2, 0, -1, 0, 0, 1, 0, -2, 0, 0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, 0, 0, 2, 0, -1, 0, 0, 1, -1, -1, 1, 0, 1, -1, -1, 1, 0, 0, -1, 0, 2, 0, 0, -1, -1, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 02 2022

Keywords

Comments

Convolution inverse of A067593.

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 - x^LucasL[k]), {k, 0, 20}], {x, 0, nmax}], x]
Showing 1-6 of 6 results.