cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A169975 Expansion of Product_{i>=0} (1 + x^(4*i+1)).

Original entry on oeis.org

1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 3, 2, 0, 1, 3, 3, 1, 1, 4, 4, 1, 1, 4, 5, 2, 1, 5, 7, 3, 1, 5, 8, 5, 2, 6, 10, 6, 2, 6, 12, 9, 3, 7, 14, 11, 4, 7, 16, 15, 6, 8, 19, 18, 8, 9, 21, 23, 11, 10, 24, 27, 14, 11, 27, 34, 19, 13, 30, 39, 24, 15, 33, 47, 31, 18, 37, 54, 38
Offset: 0

Views

Author

N. J. A. Sloane, Aug 29 2010

Keywords

Comments

Number of partitions into distinct parts of the form 4*k+1.
In general, if a > 0, b > 0, GCD(a,b) = 1 and g.f. = Product_{k>=0} (1 + x^(a*k + b)), then a(n) ~ exp(Pi*sqrt(n/(3*a))) / (2^(1 + b/a) * (3*a)^(1/4) * n^(3/4)) [Meinardus, 1954]. - Vaclav Kotesovec, Aug 26 2015
Convolution of A147599 and A169975 is A000700. - Vaclav Kotesovec, Jan 18 2017

Crossrefs

Programs

  • Mathematica
    nmax = 200; CoefficientList[Series[Product[(1 + x^(4*k+1)), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 26 2015 *)
    nmax = 200; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[If[Mod[k, 4] == 1, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}]; ], {k, 2, nmax}]; poly (* Vaclav Kotesovec, Jan 18 2017 *)

Formula

G.f.: Sum_{n>=0} (x^(2*n^2 - n) / Product_{k=1..n} (1 - x^(4*k))). - Joerg Arndt, Mar 10 2011
G.f.: G(0)/x where G(k) = 1 - 1/(1 - 1/(1 - 1/(1+(x)^(4*k+1))/G(k+1) )); (recursively defined continued fraction, see A006950). - Sergei N. Gladkovskii, Jan 28 2013
a(n) ~ exp(Pi*sqrt(n)/(2*sqrt(3))) / (2^(7/4) * 3^(1/4) * n^(3/4)) * (1 - (3*sqrt(3)/(4*Pi) + Pi/(192*sqrt(3))) / sqrt(n)). - Vaclav Kotesovec, Aug 26 2015, extended Jan 18 2017

A281243 Expansion of Product_{k>=1} (1 + x^(5*k-1)).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 2, 1, 0, 0, 1, 2, 1, 0, 0, 1, 3, 1, 0, 0, 2, 3, 1, 0, 0, 3, 4, 1, 0, 1, 4, 4, 1, 0, 1, 5, 5, 1, 0, 2, 7, 5, 1, 0, 3, 8, 6, 1, 0, 5, 10, 6, 1, 1, 6, 12, 7, 1, 1, 9, 14, 7, 1, 2, 11, 16, 8, 1
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 18 2017

Keywords

Comments

Convolution of this sequence and A280454 is A203776.

Crossrefs

Programs

  • Mathematica
    nmax = 200; CoefficientList[Series[Product[(1 + x^(5*k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 200; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 0; Do[If[Mod[k, 5] == 4, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}]; ], {k, 2, nmax}]; poly

Formula

a(n) ~ exp(sqrt(n/15)*Pi) / (2^(9/5)*15^(1/4)*n^(3/4)) * (1 + (Pi/(240*sqrt(15)) - 3*sqrt(15)/(8*Pi)) / sqrt(n)). - Vaclav Kotesovec, Jan 18 2017, extended Jan 24 2017
G.f.: Sum_{k>=0} x^(k*(5*k + 3)/2) / Product_{j=1..k} (1 - x^(5*j)). - Ilya Gutkovskiy, Nov 24 2020

A203776 Number of partitions of n into distinct parts 5k+1 or 5k+4.

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 2, 2, 1, 1, 2, 3, 3, 2, 2, 3, 5, 5, 3, 3, 5, 7, 7, 6, 5, 7, 11, 11, 8, 8, 12, 15, 15, 13, 12, 16, 22, 22, 18, 18, 24, 30, 31, 27, 26, 33, 42, 43, 37, 37, 47, 57, 58, 53, 52, 63, 78, 80, 71, 72, 88, 103, 106, 99, 98, 116, 139, 142
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 05 2012

Keywords

Comments

Convolution of A281243 and A280454. - Vaclav Kotesovec, Jan 18 2017

Examples

			a(10) = #{9+1, 6+4} = 2;
a(20) = #{19+1, 16+4, 14+6, 11+9, 9+6+4+1} = 5.
1 + x + x^4 + x^5 + x^6 + x^7 + x^9 + 2*x^10 + 2*x^11 + x^12 + x^13 + 2*x^14 + ...
q + q^61 + q^241 + q^301 + q^361 + q^421 + q^541 + 2*q^601 + 2*q^661 + q^721 + ...
		

Crossrefs

Programs

  • Haskell
    a203776 = p a047209_list where
       p _      0 = 1
       p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
    
  • Mathematica
    a[ n_] := SeriesCoefficient[ Product[ (1 + x^(5 k - 1)) (1 + x^(5 k - 4)), {k, Ceiling[ n / 5]}], {x, 0, n}] (* Michael Somos, Mar 23 2013 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^5] QPochhammer[ -x^4, x^5], {x, 0, n}] (* Michael Somos, Mar 23 2013 *)
  • PARI
    {a(n) = polcoeff( prod( k=1, ceil(n / 5), (1 + x^(5*k - 1)) * (1 + x^(5*k - 4)), 1 + x * O(x^n)), n)} /* Michael Somos, Mar 23 2013 */

Formula

Expansion of f( x, x^4) / f(-x^5, -x^10) in powers of x where f() is the Ramanujan two-variable theta function. - Michael Somos, Mar 23 2013
Euler transform of period 10 sequence [ 1, -1, 0, 1, 0, 1, 0, -1, 1, 0, ...]. - Michael Somos, Mar 23 2013
G.f.: Product_{k>0} (1 + x^(5*k - 1)) * (1 + x^(5*k - 4)). - Michael Somos, Mar 23 2013
a(n) ~ exp(sqrt(2*n/15)*Pi) / (2*30^(1/4)*n^(3/4)) * (1 + (Pi/(60*sqrt(30)) - 3*sqrt(15/2)/(8*Pi)) / sqrt(n)). - Vaclav Kotesovec, Jan 18 2017, extended Jan 24 2017

A281245 Expansion of Product_{k>=1} (1 + x^(7*k-1)).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 1, 3, 1, 0, 0, 0, 0, 2, 3, 1, 0, 0, 0, 0, 3, 4, 1, 0, 0, 0, 1, 4, 4, 1, 0, 0, 0, 1, 5, 5, 1, 0, 0, 0, 2, 7, 5, 1, 0, 0, 0
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 18 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 200; CoefficientList[Series[Product[(1 + x^(7*k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 200; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 0; Do[If[Mod[k, 7] == 6, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}]; ], {k, 2, nmax}]; poly

Formula

a(n) ~ exp(sqrt(n/21)*Pi) / (2^(13/7)*21^(1/4)*n^(3/4)) * (1 + (13*Pi/(336*sqrt(21)) - 3*sqrt(21)/(8*Pi)) / sqrt(n)). - Vaclav Kotesovec, Jan 18 2017, extended Jan 24 2017
G.f.: Sum_{k>=0} x^(k*(7*k + 5)/2) / Product_{j=1..k} (1 - x^(7*j)). - Ilya Gutkovskiy, Nov 24 2020

A280457 Expansion of Product_{k>=0} (1 + x^(7*k+1)).

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 1, 3, 2, 0, 0, 0, 0, 1, 3, 3, 1, 0, 0, 0, 1, 4, 4, 1, 0, 0, 0, 1, 4, 5, 2, 0, 0, 0, 1, 5, 7, 3, 0, 0, 0, 1, 5, 8, 5, 1, 0, 0, 1, 6, 10, 6, 1, 0, 0, 1, 6, 12, 9, 2, 0, 0, 1, 7, 14, 11, 3, 0, 0, 1, 7, 16, 15, 5
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 03 2017

Keywords

Comments

Number of partitions of n into distinct parts congruent to 1 mod 7.

Examples

			a(37) = 3 because we have [36, 1], [29, 8] and [22, 15].
		

Crossrefs

Programs

  • Mathematica
    nmax = 105; CoefficientList[Series[Product[(1 + x^(7 k + 1)), {k, 0, nmax}], {x, 0, nmax}], x]
    nmax = 200; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[If[Mod[k, 7] == 1, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}]; ], {k, 2, nmax}]; poly (* Vaclav Kotesovec, Jan 18 2017 *)

Formula

G.f.: Product_{k>=0} (1 + x^(7*k+1)).
a(n) ~ exp(Pi*sqrt(n)/sqrt(21))/(2*2^(1/7)*21^(1/4)*n^(3/4)) * (1 + (13*Pi/(336*sqrt(21)) - 3*sqrt(21)/(8*Pi)) / sqrt(n)). - Ilya Gutkovskiy, Jan 03 2017, extended by Vaclav Kotesovec, Jan 24 2017

A281244 Expansion of Product_{k>=1} (1 + x^(6*k-1)).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 3, 1, 0, 0, 0, 2, 3, 1, 0, 0, 0, 3, 4, 1, 0, 0, 1, 4, 4, 1, 0, 0, 1, 5, 5, 1, 0, 0, 2, 7, 5, 1, 0, 0, 3, 8, 6, 1, 0, 0, 5, 10, 6, 1, 0, 1
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 18 2017

Keywords

Comments

Convolution of this sequence and A280456 is A098884.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          [0$5, 1, 0$4, -1, 1][1+irem(d, 12)]*d, d=
           numtheory[divisors](j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Jan 18 2017
  • Mathematica
    nmax = 200; CoefficientList[Series[Product[(1 + x^(6*k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 200; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 0; Do[If[Mod[k, 6] == 5, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}]; ], {k, 2, nmax}]; poly

Formula

a(n) ~ exp(sqrt(n/2)*Pi/3) / (2^(25/12)*sqrt(3)*n^(3/4)) * (1 + (Pi/144 - 9/(4*Pi)) / sqrt(2*n)).
G.f.: Sum_{k>=0} x^(k*(3*k + 2)) / Product_{j=1..k} (1 - x^(6*j)). - Ilya Gutkovskiy, Nov 24 2020

A280456 Expansion of Product_{k>=0} (1 + x^(6*k+1)).

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 3, 2, 0, 0, 0, 1, 3, 3, 1, 0, 0, 1, 4, 4, 1, 0, 0, 1, 4, 5, 2, 0, 0, 1, 5, 7, 3, 0, 0, 1, 5, 8, 5, 1, 0, 1, 6, 10, 6, 1, 0, 1, 6, 12, 9, 2, 0, 1, 7, 14, 11, 3, 0, 1, 7, 16, 15, 5, 0, 1, 8, 19, 18, 7, 1, 1, 8, 21, 23, 10, 1, 1, 9, 24
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 03 2017

Keywords

Comments

Number of partitions of n into distinct parts congruent to 1 mod 6.
Convolution of A281244 and A280456 is A098884. - Vaclav Kotesovec, Jan 18 2017

Examples

			a(32) = 3 because we have [31, 1], [25, 7] and [19, 13].
		

Crossrefs

Programs

  • Mathematica
    nmax = 105; CoefficientList[Series[Product[(1 + x^(6 k + 1)), {k, 0, nmax}], {x, 0, nmax}], x]
    nmax = 200; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[If[Mod[k, 6] == 1, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}]; ], {k, 2, nmax}]; poly (* Vaclav Kotesovec, Jan 18 2017 *)

Formula

G.f.: Product_{k>=0} (1 + x^(6*k+1)).
a(n) ~ exp(Pi*sqrt(n)/(3*sqrt(2)))/(2*2^(5/12)*sqrt(3)*n^(3/4)) * (1 + (Pi/(144*sqrt(2)) - 9/(4*sqrt(2)*Pi)) / sqrt(n)). - Ilya Gutkovskiy, Jan 03 2017, extended by Vaclav Kotesovec, Jan 18 2017

A284314 Expansion of Product_{k>=0} (1 - x^(5*k+1)) in powers of x.

Original entry on oeis.org

1, -1, 0, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 2, -1, 0, 0, -1, 2, -1, 0, 0, -1, 3, -2, 0, 0, -1, 3, -3, 1, 0, -1, 4, -4, 1, 0, -1, 4, -5, 2, 0, -1, 5, -7, 3, 0, -1, 5, -8, 5, -1, -1, 6, -10, 6, -1, -1, 6, -12, 9, -2, -1, 7, -14, 11, -3, -1, 7, -16, 15, -5
Offset: 0

Views

Author

Seiichi Manyama, Mar 25 2017

Keywords

Crossrefs

Cf. Product_{k>=0} (1 - x^(m*k+1)): A081362 (m=2), A284312 (m=3), A284313 (m=4), this sequence (m=5).

Programs

  • Mathematica
    CoefficientList[Series[Product[1 - x^(5k + 1), {k, 0, 100}], {x, 0, 100}], x] (* Indranil Ghosh, Mar 25 2017 *)
  • PARI
    Vec(prod(k=0, 100, 1 - x^(5*k + 1)) + O(x^101)) \\ Indranil Ghosh, Mar 25 2017

Formula

a(n) = -(1/n)*Sum_{k=1..n} A284097(k)*a(n-k), a(0) = 1.

A281271 Expansion of Product_{k>=1} (1 + x^(5*k-2)).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 2, 0, 1, 1, 0, 2, 0, 1, 1, 0, 3, 0, 1, 2, 0, 3, 0, 1, 3, 0, 4, 1, 1, 4, 0, 4, 1, 1, 5, 0, 5, 2, 1, 7, 0, 5, 3, 1, 8, 0, 6, 5, 1, 10, 1, 6, 6, 1, 12, 1, 7, 9, 1, 14, 2, 7, 11, 1, 16, 3, 8, 15, 1
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 18 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 + x^(5*k - 2)), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 100; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 0; Do[If[Mod[k, 5] == 3, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}]; ], {k, 2, nmax}]; poly

Formula

a(n) ~ exp(sqrt(n/15)*Pi) / (2^(8/5)*15^(1/4)*n^(3/4)) * (1 - (3*sqrt(15)/(8*Pi) + 11*Pi/(240*sqrt(15))) / sqrt(n)). - Vaclav Kotesovec, Jan 18 2017, extended Jan 24 2017

A281272 Expansion of Product_{k>=1} (1 + x^(5*k-3)).

Original entry on oeis.org

1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 1, 0, 2, 0, 1, 1, 0, 3, 0, 2, 1, 0, 3, 0, 3, 1, 1, 4, 0, 4, 1, 1, 4, 0, 5, 1, 2, 5, 0, 7, 1, 3, 5, 0, 8, 1, 5, 6, 1, 10, 1, 6, 6, 1, 12, 1, 9, 7, 2, 14, 1, 11, 7, 3, 16, 1, 15, 8, 5, 19, 1, 18
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 18 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 + x^(5*k - 3)), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 100; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 0; Do[If[Mod[k, 5] == 2, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}]; ], {k, 2, nmax}]; poly

Formula

a(n) ~ exp(sqrt(n/15)*Pi) / (2^(7/5)*15^(1/4)*n^(3/4)) * (1 - (3*sqrt(15)/(8*Pi) + 11*Pi/(240*sqrt(15))) / sqrt(n)). - Vaclav Kotesovec, Jan 18 2017, extended Jan 24 2017
Showing 1-10 of 16 results. Next