cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A219607 Number of partitions of n into distinct parts 5*k+2 or 5*k+3.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 2, 1, 2, 2, 1, 3, 1, 3, 3, 2, 5, 3, 5, 5, 4, 7, 4, 7, 7, 6, 11, 7, 11, 11, 9, 15, 10, 15, 16, 14, 22, 16, 23, 23, 20, 30, 22, 31, 32, 29, 42, 33, 44, 45, 41, 56, 45, 59, 61, 57, 78, 64, 82, 84, 78, 103, 86, 108, 112, 107, 138
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 30 2012

Keywords

Comments

Convolution of A281271 and A281272. - Vaclav Kotesovec, Jan 18 2017

Examples

			a(10) = #{8+2, 7+3} = 2;
a(11) = #{8+3} = 1;
a(12) = #{12, 7+3+2} = 2;
a(13) = #{13, 8+3+2} = 2;
a(14) = #{12+2} = 1;
a(15) = #{13+2, 12+3, 8+7} = 3;
a(16) = #{13+3} = 1;
a(17) = #{17, 12+3+2, 8+7+2} = 3;
a(18) = #{18, 13+3+2, 8+7+3} = 3;
a(19) = #{17+2, 12+7} = 2;
a(20) = #{18+2, 17+3, 13+7, 12+8, 8+7+3+2} = 5.
		

Crossrefs

Programs

  • Haskell
    a219607 = p a047221_list where
       p _      0 = 1
       p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 + x^(5*k - 2))*(1 + x^(5*k - 3)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 18 2017 *)

Formula

a(n) ~ exp(sqrt(2*n/15)*Pi) / (2*30^(1/4)*n^(3/4)) * (1 - (3*sqrt(15/2)/(8*Pi) + 11*Pi/(60*sqrt(30))) / sqrt(n)). - Vaclav Kotesovec, Jan 18 2017, extended Jan 24 2017

A281272 Expansion of Product_{k>=1} (1 + x^(5*k-3)).

Original entry on oeis.org

1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 1, 0, 2, 0, 1, 1, 0, 3, 0, 2, 1, 0, 3, 0, 3, 1, 1, 4, 0, 4, 1, 1, 4, 0, 5, 1, 2, 5, 0, 7, 1, 3, 5, 0, 8, 1, 5, 6, 1, 10, 1, 6, 6, 1, 12, 1, 9, 7, 2, 14, 1, 11, 7, 3, 16, 1, 15, 8, 5, 19, 1, 18
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 18 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 + x^(5*k - 3)), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 100; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 0; Do[If[Mod[k, 5] == 2, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}]; ], {k, 2, nmax}]; poly

Formula

a(n) ~ exp(sqrt(n/15)*Pi) / (2^(7/5)*15^(1/4)*n^(3/4)) * (1 - (3*sqrt(15)/(8*Pi) + 11*Pi/(240*sqrt(15))) / sqrt(n)). - Vaclav Kotesovec, Jan 18 2017, extended Jan 24 2017

A301563 Expansion of Product_{k>=0} (1 + x^(5*k+1))*(1 + x^(5*k+3)).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 2, 1, 2, 2, 1, 3, 2, 2, 4, 3, 4, 4, 4, 6, 4, 6, 7, 5, 9, 8, 8, 11, 9, 12, 12, 12, 16, 13, 17, 19, 17, 23, 21, 24, 27, 24, 32, 30, 32, 40, 35, 43, 45, 44, 53, 50, 59, 62, 61, 75, 70, 78, 87, 83, 99, 97, 105, 118, 112, 133, 134, 138, 159, 153
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 23 2018

Keywords

Comments

Number of partitions of n into distinct parts congruent to 1 or 3 mod 5.

Examples

			a(14) = 3 because we have [13, 1], [11, 3] and [8, 6].
		

Crossrefs

Programs

  • Mathematica
    nmax = 72; CoefficientList[Series[Product[(1 + x^(5 k + 1)) (1 + x^(5 k + 3)), {k, 0, nmax}], {x, 0, nmax}], x]
    nmax = 72; CoefficientList[Series[QPochhammer[-x, x^5] QPochhammer[-x^3, x^5], {x, 0, nmax}], x]
    nmax = 72; CoefficientList[Series[Product[(1 + Boole[MemberQ[{1, 3}, Mod[k, 5]]] x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + x^A047219(k)).
a(n) ~ exp(Pi*sqrt(2*n/15)) / (2^(21/20) * 15^(1/4) * n^(3/4)). - Vaclav Kotesovec, Mar 24 2018

A301565 Expansion of Product_{k>=0} (1 + x^(5*k+3))*(1 + x^(5*k+4)).

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 2, 2, 1, 1, 2, 3, 2, 1, 2, 4, 4, 3, 3, 4, 6, 6, 4, 4, 7, 9, 7, 6, 8, 11, 12, 10, 9, 12, 16, 16, 14, 14, 19, 23, 22, 19, 21, 27, 31, 29, 26, 31, 40, 42, 38, 38, 45, 53, 55, 51, 52, 63, 73, 73, 69, 73, 87, 97, 95, 91, 100, 118, 128
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 23 2018

Keywords

Comments

Number of partitions of n into distinct parts congruent to 3 or 4 mod 5.

Examples

			a(17) = 3 because we have [14, 3], [13, 4] and [9, 8].
		

Crossrefs

Programs

  • Mathematica
    nmax = 74; CoefficientList[Series[Product[(1 + x^(5 k + 3)) (1 + x^(5 k + 4)), {k, 0, nmax}], {x, 0, nmax}], x]
    nmax = 74; CoefficientList[Series[QPochhammer[-x^3, x^5] QPochhammer[-x^4, x^5], {x, 0, nmax}], x]
    nmax = 74; CoefficientList[Series[Product[(1 + Boole[MemberQ[{3, 4}, Mod[k, 5]]] x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + x^A047204(k)).
a(n) ~ exp(Pi*sqrt(2*n/15)) / (2^(33/20) * 15^(1/4) * n^(3/4)). - Vaclav Kotesovec, Mar 24 2018

A301569 Expansion of Product_{k>=1} (1 + x^(5*k))*(1 + x^(5*k-2)).

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 0, 2, 0, 1, 1, 0, 3, 0, 2, 2, 0, 5, 0, 2, 4, 0, 7, 1, 3, 7, 0, 10, 2, 4, 11, 0, 14, 4, 5, 17, 0, 19, 8, 6, 25, 1, 25, 13, 8, 36, 2, 33, 21, 10, 50, 4, 43, 33, 12, 69, 8, 55, 49, 15, 93, 14, 70, 71, 19, 124, 23, 88, 102, 24, 163, 37, 110, 142, 31
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 23 2018

Keywords

Comments

Number of partitions of n into distinct parts congruent to 0 or 3 mod 5.

Examples

			a(13) = 3 because we have [13], [10, 3] and [8, 5].
		

Crossrefs

Programs

  • Mathematica
    nmax = 75; CoefficientList[Series[Product[(1 + x^(5 k)) (1 + x^(5 k - 2)), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 75; CoefficientList[Series[x^2 QPochhammer[-1, x^5] QPochhammer[-x^(-2), x^5]/(2 (1 + x^2)), {x, 0, nmax}], x]
    nmax = 75; CoefficientList[Series[Product[(1 + Boole[MemberQ[{0, 3}, Mod[k, 5]]] x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=2} (1 + x^A047218(k)).
a(n) ~ exp(Pi*sqrt(2*n/15)) / (2^(37/20) * 15^(1/4) * n^(3/4)). - Vaclav Kotesovec, Mar 24 2018

A284320 Expansion of Product_{k>=0} (1 - x^(5*k+3)) in powers of x.

Original entry on oeis.org

1, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, 2, 0, -1, -1, 0, 2, 0, -1, -1, 0, 3, 0, -1, -2, 0, 3, 0, -1, -3, 0, 4, 1, -1, -4, 0, 4, 1, -1, -5, 0, 5, 2, -1, -7, 0, 5, 3, -1, -8, 0, 6, 5, -1, -10, -1, 6, 6, -1, -12, -1, 7, 9, -1, -14, -2, 7, 11
Offset: 0

Views

Author

Seiichi Manyama, Mar 25 2017

Keywords

Crossrefs

Cf. Product_{k>=0} (1 - x^(5*k+m)): A284314 (m=1), A284319 (m=2), this sequence (m=3), A284317 (m=4).

Programs

  • Mathematica
    CoefficientList[Series[Product[1 - x^(5k + 3), {k, 0, 100}], {x, 0, 100}], x] (* Indranil Ghosh, Mar 25 2017 *) (* or *)
    a[0]=1; a[n_]:=a[n]= -(1/n) Sum[ a[n-k] DivisorSum[k, # &, Mod[#,5] == 3 &], {k, n}]; a /@ Range[0, 100] (* Giovanni Resta, Mar 25 2017 *)
  • PARI
    Vec(prod(k=0, 100, 1 - x^(5*k + 3)) + O(x^101)) \\ Indranil Ghosh, Mar 25 2017

Formula

a(n) = -(1/n)*Sum_{k=1..n} A284281(k)*a(n-k), a(0) = 1.

A374077 Expansion of Product_{k>=1} 1 / (1 + x^(5*k-2)).

Original entry on oeis.org

1, 0, 0, -1, 0, 0, 1, 0, -1, -1, 0, 1, 1, -1, -1, -1, 2, 1, 0, -2, -1, 1, 2, 0, -2, -2, 2, 2, 1, -3, -2, 1, 4, 1, -3, -4, 2, 4, 3, -5, -5, 0, 7, 4, -4, -8, 0, 7, 8, -5, -9, -4, 10, 9, -3, -13, -5, 9, 14, -3, -14, -10, 12, 16, 1, -19, -12, 10, 23, 1, -20, -20, 13, 26, 8, -26
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 27 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 75; CoefficientList[Series[Product[1/(1 + x^(5 k - 2)), {k, 1, nmax}], {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = (1/n) Sum[DivisorSum[k, (-1)^(k/#) # &, Mod[#, 5] == 3 &] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 75}]
Showing 1-7 of 7 results.