cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A078181 a(n) = Sum_{d|n, d == 1 (mod 3)} d.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 8, 5, 1, 11, 1, 5, 14, 8, 1, 21, 1, 1, 20, 15, 8, 23, 1, 5, 26, 14, 1, 40, 1, 11, 32, 21, 1, 35, 8, 5, 38, 20, 14, 55, 1, 8, 44, 27, 1, 47, 1, 21, 57, 36, 1, 70, 1, 1, 56, 40, 20, 59, 1, 15, 62, 32, 8, 85, 14, 23, 68, 39, 1, 88, 1, 5, 74, 38, 26, 100, 8, 14, 80, 71, 1
Offset: 1

Views

Author

Vladeta Jovovic, Nov 21 2002

Keywords

Crossrefs

Cf. Sum_{d|n, d==1 mod k} d: A000593 (k=2), this sequence (k=3), A050449 (k=4), A284097 (k=5), A284098 (k=6), A284099 (k=7), A284100 (k=8).

Programs

  • Maple
    A078181 := proc(n)
        a := 0 ;
        for d in numtheory[divisors](n) do
            if modp(d,3) =1 then
                a :=a+d ;
            end if;
        end do:
        a;
    end proc: # R. J. Mathar, May 11 2016
  • Mathematica
    a[n_] := Plus @@ Select[Divisors[n], Mod[#, 3] == 1 &]; Array[a, 100] (* Giovanni Resta, May 11 2016 *)

Formula

G.f.: Sum_{n>=0} (3*n+1)*x^(3*n+1)/(1-x^(3*n+1)).
G.f.: -q*P'/P where P = Product_{n>=0} (1 - q^(3*n+1)). - Joerg Arndt, Aug 03 2011
Conjecture. If a(n)=n+1 then n==1 (mod 3). (Is this easy to settle? It has been verified for n=1,2,3,...,2000.) - John W. Layman, Apr 03 2006
The conjecture is false. The first and only counterexample below 10^8 is a(6800) = 6801 and 6800 == 2 (mod 3). - Lambert Herrgesell (zero815(AT)googlemail.com), May 06 2008
Equals A051731 * [1, 0, 0, 4, 0, 0, 7, 0, 0, 10, ...]. - Gary W. Adamson, Nov 06 2007
A272027(n/3) + a(n) + A078182(n) = A000203(n). - R. J. Mathar, May 25 2020
G.f.: Sum_{n >= 1} x^n*(1 + 2*x^(3*n))/(1 - x^(3*n))^2. - Peter Bala, Dec 19 2021
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/36 = 0.274155... (A353908). - Amiram Eldar, Nov 26 2023

A050452 a(n) = Sum_{d|n, d == 3 (mod 4)} d.

Original entry on oeis.org

0, 0, 3, 0, 0, 3, 7, 0, 3, 0, 11, 3, 0, 7, 18, 0, 0, 3, 19, 0, 10, 11, 23, 3, 0, 0, 30, 7, 0, 18, 31, 0, 14, 0, 42, 3, 0, 19, 42, 0, 0, 10, 43, 11, 18, 23, 47, 3, 7, 0, 54, 0, 0, 30, 66, 7, 22, 0, 59, 18, 0, 31, 73, 0, 0, 14, 67, 0, 26, 42, 71, 3, 0, 0, 93, 19, 18
Offset: 1

Views

Author

N. J. A. Sloane, Dec 23 1999

Keywords

Crossrefs

Cf. Sum_{d|n, d=k-1 mod k} d: A000593 (k=2), A078182 (k=3), this sequence (k=4).

Programs

  • Maple
    A050452 := proc(n)
            a := 0 ;
            for d in numtheory[divisors](n) do
                    if d mod 4 = 3 then
                            a := a+d ;
                    end if;
            end do:
            a;
    end proc:
    seq(A050452(n),n=1..40) ; # R. J. Mathar, Dec 20 2011
  • Mathematica
    Table[Total[Select[Divisors[n],Mod[#,4]==3&]],{n,80}] (* Harvey P. Dale, Jul 07 2013 *)
  • PARI
    a(n) = sumdiv(n, d, d*((d % 4) == 3)); \\ Amiram Eldar, Nov 26 2023

Formula

a(n) = A000593(n) - A050449(n). - Reinhard Zumkeller, Apr 18 2006
G.f.: Sum_{k>=1} (4*k - 1)*x^(4*k-1)/(1 - x^(4*k-1)). - Ilya Gutkovskiy, Mar 21 2017
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/48 = 0.205616... (A245058). - Amiram Eldar, Nov 26 2023

A035386 Number of partitions of n into parts congruent to 2 mod 3.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 1, 2, 1, 3, 2, 3, 3, 4, 4, 6, 5, 7, 7, 9, 9, 12, 11, 15, 15, 18, 19, 23, 23, 29, 29, 35, 37, 43, 45, 53, 55, 64, 68, 78, 82, 95, 99, 114, 121, 136, 145, 164, 173, 196, 208, 232, 248, 276, 294, 328, 349, 386, 413, 456, 486, 537, 572, 629, 673, 737, 787
Offset: 0

Views

Author

Keywords

Comments

a(n) = A116376(3*n). - Reinhard Zumkeller, Feb 15 2006

Crossrefs

Programs

  • Maple
    g:=add(x^(n*(3*n-1))/mul((1-x^(3*k))*(1-x^(3*k-1)), k = 1..n), n = 0..6): gser:=series(g,x,101): seq(coeff(gser,x,n), n = 0..100); # Peter Bala, Feb 02 2021
  • Mathematica
    nmax=100; CoefficientList[Series[Product[1/(1-x^(3*k+2)),{k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 26 2015 *)
    nmax = 100; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 0; Do[If[Mod[k, 3] == 2, Do[poly[[j + 1]] -= poly[[j - k + 1]], {j, nmax, k, -1}];], {k, 2, nmax}]; poly2 = Take[poly, {2, nmax + 1}]; poly3 = 1 + Sum[poly2[[n]]*x^n, {n, 1, Length[poly2]}]; CoefficientList[Series[1/poly3, {x, 0, Length[poly2]}], x] (* Vaclav Kotesovec, Jan 13 2017 *)
    nmax = 50; s = Range[0, nmax/3]*3 + 2;
    Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Aug 05 2020 *)
  • PARI
    {a(n)= if( n<0, 0, polcoeff( 1 / prod( k=1, n, 1 - (k%3==2) * x^k, 1 + x * O(x^n)), n))} /* Michael Somos, Jul 24 2007 */

Formula

a(n) = 1/n*Sum_{k=1..n} A078182(k)*a(n-k), a(0) = 1. - Vladeta Jovovic, Nov 21 2002
Euler transform of period 3 sequence [ 0, 1, 0, ...]. - Michael Somos, Jul 24 2007
a(n) ~ Gamma(2/3) * exp(sqrt(2*n)*Pi/3) / (2^(11/6) * sqrt(3) * Pi^(1/3) * n^(5/6)) * (1 + (Pi/72 - 5/(3*Pi)) / sqrt(2*n)). - Vaclav Kotesovec, Feb 26 2015, extended Jan 24 2017
G.f.: A(x) = Sum_{n >= 0} x^(n*(3*n-1))/Product_{k = 1..n} ((1 - x^(3*k)) *(1 - x^(3*k-1))). (Set z = x^2 and q = x^3 in Mc Laughlin et al., Section 1.3, Entry 7.) - Peter Bala, Feb 02 2021

A284103 a(n) = Sum_{d|n, d == 4 (mod 5)} d.

Original entry on oeis.org

0, 0, 0, 4, 0, 0, 0, 4, 9, 0, 0, 4, 0, 14, 0, 4, 0, 9, 19, 4, 0, 0, 0, 28, 0, 0, 9, 18, 29, 0, 0, 4, 0, 34, 0, 13, 0, 19, 39, 4, 0, 14, 0, 48, 9, 0, 0, 28, 49, 0, 0, 4, 0, 63, 0, 18, 19, 29, 59, 4, 0, 0, 9, 68, 0, 0, 0, 38, 69, 14, 0, 37, 0, 74, 0, 23, 0, 39, 79
Offset: 1

Views

Author

Seiichi Manyama, Mar 20 2017

Keywords

Crossrefs

Cf. Sum_{d|n, d=k-1 mod k} d: A000593 (k=2), A078182 (k=3), A050452 (k=4), this sequence (k=5), A284104 (k=6), A284105 (k=7).

Programs

  • Mathematica
    Table[Sum[If[Mod[d, 5] == 4, d, 0], {d, Divisors[n]}], {n, 79}] (* Indranil Ghosh, Mar 21 2017 *)
    Table[Total[Select[Divisors[n],Mod[#,5]==4&]],{n,80}] (* Harvey P. Dale, Sep 24 2024 *)
  • PARI
    for(n=1, 79, print1(sumdiv(n, d, if(Mod(d, 5)==4, d, 0)), ", ")) \\ Indranil Ghosh, Mar 21 2017
    
  • Python
    from sympy import divisors
    def a(n): return sum([d for d in divisors(n) if d%5==4]) # Indranil Ghosh, Mar 21 2017

Formula

G.f.: Sum_{k>=1} (5*k - 1)*x^(5*k-1)/(1 - x^(5*k-1)). - Ilya Gutkovskiy, Mar 21 2017
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/60 = 0.164493... (A013661 / 10). - Amiram Eldar, Nov 26 2023

A284105 a(n) = Sum_{d|n, d == 6 (mod 7)} d.

Original entry on oeis.org

0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 6, 13, 0, 0, 0, 0, 6, 0, 20, 0, 0, 0, 6, 0, 13, 27, 0, 0, 6, 0, 0, 0, 34, 0, 6, 0, 0, 13, 20, 41, 6, 0, 0, 0, 0, 0, 54, 0, 0, 0, 13, 0, 33, 55, 0, 0, 0, 0, 26, 0, 62, 0, 0, 13, 6, 0, 34, 69, 0, 0, 6, 0, 0, 0, 76, 0, 19, 0, 20, 27, 41
Offset: 1

Views

Author

Seiichi Manyama, Mar 20 2017

Keywords

Crossrefs

Cf. A109708.
Cf. Sum_{d|n, d == k-1 (mod k)} d: A000593 (k=2), A078182 (k=3), A050452 (k=4), A284103 (k=5), A284104 (k=6), this sequence (k=7).
Cf. Sum_{d|n, d == k (mod 7)} d: A284099 (k=1), A284443 (k=2), A284444 (k=3), A284445 (k=4), A284446 (k=5), this sequence (k=6).

Programs

  • Mathematica
    Table[Sum[If[Mod[d,7] == 6,d, 0], {d, Divisors[n]}], {n, 82}] (* Indranil Ghosh, Mar 21 2017 *)
  • PARI
    for(n=1, 82, print1(sumdiv(n, d, if(Mod(d,7)==6, d, 0)),", ")) \\ Indranil Ghosh, Mar 21 2017
    
  • Python
    from sympy import divisors
    def a(n): return sum([d for d in divisors(n) if d%7==6]) # Indranil Ghosh, Mar 21 2017

Formula

G.f.: Sum_{k>=1} (7*k - 1)*x^(7*k-1)/(1 - x^(7*k-1)). - Ilya Gutkovskiy, Mar 21 2017
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/84 = 0.117495... . - Amiram Eldar, Nov 26 2023

A284104 a(n) = Sum_{d|n, d == 5 (mod 6)} d.

Original entry on oeis.org

0, 0, 0, 0, 5, 0, 0, 0, 0, 5, 11, 0, 0, 0, 5, 0, 17, 0, 0, 5, 0, 11, 23, 0, 5, 0, 0, 0, 29, 5, 0, 0, 11, 17, 40, 0, 0, 0, 0, 5, 41, 0, 0, 11, 5, 23, 47, 0, 0, 5, 17, 0, 53, 0, 16, 0, 0, 29, 59, 5, 0, 0, 0, 0, 70, 11, 0, 17, 23, 40, 71, 0, 0, 0, 5, 0, 88, 0, 0, 5
Offset: 1

Views

Author

Seiichi Manyama, Mar 20 2017

Keywords

Crossrefs

Cf. Sum_{d|n, d=k-1 mod k} d: A000593 (k=2), A078182 (k=3), A050452 (k=4), A284103 (k=5), this sequence (k=6), A284105 (k=7).

Programs

  • Mathematica
    Table[Sum[If[Mod[d, 6] == 5, d, 0], {d, Divisors[n]}], {n, 80}] (* Indranil Ghosh, Mar 21 2017 *)
    Table[Total[Select[Divisors[n],Mod[#,6]==5&]],{n,80}] (* Harvey P. Dale, Dec 30 2017 *)
  • PARI
    for(n=1, 80, print1(sumdiv(n, d, if(Mod(d,6)==5, d, 0)),", ")) \\ Indranil Ghosh, Mar 21 2017
    
  • Python
    from sympy import divisors
    def a(n): return sum([d for d in divisors(n) if d%6==5]) # Indranil Ghosh, Mar 21 2017

Formula

G.f.: Sum_{k>=1} (6*k - 1)*x^(6*k-1)/(1 - x^(6*k-1)). - Ilya Gutkovskiy, Mar 21 2017
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/72 = 0.137077... (A086729). - Amiram Eldar, Nov 26 2023

A293898 Sum of proper divisors of n of the form 3k+2.

Original entry on oeis.org

0, 0, 0, 2, 0, 2, 0, 2, 0, 7, 0, 2, 0, 2, 5, 10, 0, 2, 0, 7, 0, 13, 0, 10, 5, 2, 0, 16, 0, 7, 0, 10, 11, 19, 5, 2, 0, 2, 0, 35, 0, 16, 0, 13, 5, 25, 0, 10, 0, 7, 17, 28, 0, 2, 16, 24, 0, 31, 0, 27, 0, 2, 0, 42, 5, 13, 0, 19, 23, 56, 0, 10, 0, 2, 5, 40, 11, 28, 0, 35, 0, 43, 0, 16, 22, 2, 29, 65, 0, 7, 0, 25, 0, 49, 5, 42, 0, 16, 11, 77, 0, 19, 0, 36, 40
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, # &, And[Mod[#, 3] == 2, # != n] &], {n, 105}] (* Michael De Vlieger, Nov 08 2017 *)
  • PARI
    A293898(n) = sumdiv(n,d,(d
    				

Formula

a(n) = A078182(n) - ([n == 2 (mod 3)]*n).
G.f.: Sum_{k>=1} (3*k-1) * x^(6*k-2) / (1 - x^(3*k-1)). - Ilya Gutkovskiy, Apr 14 2021
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/36 - 1/6 = 0.107489... . - Amiram Eldar, Nov 27 2023

A326400 Expansion of Sum_{k>=1} k * x^(2*k) / (1 - x^(3*k)).

Original entry on oeis.org

0, 1, 0, 2, 1, 3, 0, 5, 0, 7, 1, 6, 0, 8, 3, 10, 1, 9, 0, 15, 0, 13, 1, 15, 5, 14, 0, 16, 1, 21, 0, 21, 3, 19, 8, 18, 0, 20, 0, 35, 1, 24, 0, 27, 9, 25, 1, 30, 0, 36, 3, 28, 1, 27, 16, 40, 0, 31, 1, 45, 0, 32, 0, 42, 14, 39, 0, 39, 3, 56, 1, 45, 0, 38, 15, 40, 8, 42, 0, 71
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 11 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 80; CoefficientList[Series[Sum[k x^(2 k)/(1 - x^(3 k)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, # &, MemberQ[{2}, Mod[n/#, 3]] &], {n, 1, 80}]

Formula

a(n) = Sum_{d|n, n/d==2 (mod 3)} d.
G.f.: Sum_{k>0} x^(3*k-1) / (1 - x^(3*k-1))^2. - Seiichi Manyama, Jun 29 2023

A284315 Expansion of Product_{k>=0} (1 - x^(3*k+2)) in powers of x.

Original entry on oeis.org

1, 0, -1, 0, 0, -1, 0, 1, -1, 0, 1, -1, 0, 2, -1, -1, 2, -1, -1, 3, -1, -2, 3, -1, -3, 4, 0, -4, 4, 0, -5, 5, 1, -7, 5, 2, -8, 6, 4, -10, 5, 5, -12, 6, 8, -14, 5, 10, -16, 5, 14, -19, 3, 17, -21, 2, 22, -23, -1, 26, -26, -3, 33, -28, -8, 38, -30, -12, 46, -32, -19
Offset: 0

Views

Author

Seiichi Manyama, Mar 25 2017

Keywords

Crossrefs

Cf. Product_{k>=0} (1 - x^(m*k+m-1)): A081362 (m=2), this sequence (m=3), A284316 (m=4), A284317 (m=5).

Programs

  • Mathematica
    CoefficientList[Series[Product[1 - x^(3k + 2), {k, 0, 100}], {x, 0, 100}], x] (* Indranil Ghosh, Mar 25 2017 *)
  • PARI
    Vec(prod(k=0, 100, 1 - x^(3*k+2)) + O(x^101)) \\ Indranil Ghosh, Mar 25 2017

Formula

a(n) = -(1/n) * Sum_{k=1..n} A078182(k) * a(n-k), a(0) = 1.

A363890 Sum of divisors of 3*n-1 of form 3*k+2.

Original entry on oeis.org

2, 5, 10, 11, 16, 17, 27, 23, 28, 29, 42, 40, 40, 41, 57, 47, 57, 53, 80, 59, 64, 70, 87, 71, 76, 88, 115, 83, 88, 89, 117, 100, 114, 101, 140, 107, 128, 113, 147, 136, 124, 130, 170, 131, 136, 137, 216, 154, 148, 149, 200, 160, 160, 184, 207, 167, 194, 173, 241, 179, 224, 190, 237
Offset: 1

Views

Author

Seiichi Manyama, Jun 26 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[3*n - 1, # &, Mod[#, 3] == 2 &]; Array[a, 100] (* Amiram Eldar, Jun 26 2023 *)
  • PARI
    a(n) = sumdiv(3*n-1, d, (d%3==2)*d);

Formula

a(n) = A078182(3*n-1).
G.f.: Sum_{k>0} (3*k-1) * x^k/(1 - x^(3*k-1)).
Showing 1-10 of 19 results. Next