cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A109091 Expansion of (1 - eta(q)^5 / eta(q^5)) / 5 in powers of q.

Original entry on oeis.org

1, -1, -2, 3, 1, 2, -6, -5, 7, -1, 12, -6, -12, 6, -2, 11, -16, -7, 20, 3, 12, -12, -22, 10, 1, 12, -20, -18, 30, 2, 32, -21, -24, 16, -6, 21, -36, -20, 24, -5, 42, -12, -42, 36, 7, 22, -46, -22, 43, -1, 32, -36, -52, 20, 12, 30, -40, -30, 60, -6, 62, -32, -42, 43, -12, 24, -66, -48, 44, 6, 72, -35, -72, 36, -2, 60, -72
Offset: 1

Views

Author

Michael Somos, Jun 18 2005

Keywords

Examples

			G.f. = q - q^2 - 2*q^3 + 3*q^4 + q^5 + 2*q^6 - 6*q^7 - 5*q^8 + 7*q^9 - q^10 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ d KroneckerSymbol[ 5, d], {d, Divisors@n}]]; (* Michael Somos, Apr 26 2015 *)
    a[ n_] := SeriesCoefficient[ (1 - QPochhammer[ q]^5 / QPochhammer[ q^5]) / 5, {q, 0, n}]; (* Michael Somos, Apr 26 2015 *)
  • PARI
    {a(n) = my(A); if( n<1, 0, A = x * O(x^n); -1/5 * polcoeff( eta(x + A)^5 / eta(x^5 + A), n))};
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, d * kronecker(5, d)))} /* Michael Somos, Mar 21 2008 */
    
  • Ruby
    def s(k, m, n)
      s = 0
      (1..n).each{|i| s += i if n % i == 0 && i % k == m}
      s
    end
    def A109091(n)
      (1..n).map{|i| s(5, 1, i) + s(5, 4, i) - s(5, 2, i) - s(5, 3, i)}
    end # Seiichi Manyama, Apr 01 2017

Formula

G.f.: (1 - Product_{k>0} (1 - x^k)^5 / (1 - x^(5*k))) / 5 = Sum_{k>0} x^k * (1 - x^k)^2 * (1 + x^(6*k) - 4*x^(2*k) * (1 + x^k +x^(2*k))) / (1 - x^(5*k))^2.
-5*a(n) = A109064(n) unless n = 0.
a(n) = A284097(n) + A284103(n) - A284280(n) - A284281(n) = A284150(n) - A284152(n). - Seiichi Manyama, Apr 01 2017
L.g.f.: -log(1/(1 + x/(1 + x^2/(1 + x^3/(1 + x^4/(1 + x^5/(1 + ...))))))) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 10 2017
Sum_{k=1..n} abs(a(k)) ~ c * n^2, where c = Pi^2/(15*sqrt(5)) = 0.294254... . - Amiram Eldar, Jan 29 2024

A284105 a(n) = Sum_{d|n, d == 6 (mod 7)} d.

Original entry on oeis.org

0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 6, 13, 0, 0, 0, 0, 6, 0, 20, 0, 0, 0, 6, 0, 13, 27, 0, 0, 6, 0, 0, 0, 34, 0, 6, 0, 0, 13, 20, 41, 6, 0, 0, 0, 0, 0, 54, 0, 0, 0, 13, 0, 33, 55, 0, 0, 0, 0, 26, 0, 62, 0, 0, 13, 6, 0, 34, 69, 0, 0, 6, 0, 0, 0, 76, 0, 19, 0, 20, 27, 41
Offset: 1

Views

Author

Seiichi Manyama, Mar 20 2017

Keywords

Crossrefs

Cf. A109708.
Cf. Sum_{d|n, d == k-1 (mod k)} d: A000593 (k=2), A078182 (k=3), A050452 (k=4), A284103 (k=5), A284104 (k=6), this sequence (k=7).
Cf. Sum_{d|n, d == k (mod 7)} d: A284099 (k=1), A284443 (k=2), A284444 (k=3), A284445 (k=4), A284446 (k=5), this sequence (k=6).

Programs

  • Mathematica
    Table[Sum[If[Mod[d,7] == 6,d, 0], {d, Divisors[n]}], {n, 82}] (* Indranil Ghosh, Mar 21 2017 *)
  • PARI
    for(n=1, 82, print1(sumdiv(n, d, if(Mod(d,7)==6, d, 0)),", ")) \\ Indranil Ghosh, Mar 21 2017
    
  • Python
    from sympy import divisors
    def a(n): return sum([d for d in divisors(n) if d%7==6]) # Indranil Ghosh, Mar 21 2017

Formula

G.f.: Sum_{k>=1} (7*k - 1)*x^(7*k-1)/(1 - x^(7*k-1)). - Ilya Gutkovskiy, Mar 21 2017
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/84 = 0.117495... . - Amiram Eldar, Nov 26 2023

A284280 a(n) = Sum_{d|n, d == 2 (mod 5)} d.

Original entry on oeis.org

0, 2, 0, 2, 0, 2, 7, 2, 0, 2, 0, 14, 0, 9, 0, 2, 17, 2, 0, 2, 7, 24, 0, 14, 0, 2, 27, 9, 0, 2, 0, 34, 0, 19, 7, 14, 37, 2, 0, 2, 0, 51, 0, 24, 0, 2, 47, 14, 7, 2, 17, 54, 0, 29, 0, 9, 57, 2, 0, 14, 0, 64, 7, 34, 0, 24, 67, 19, 0, 9, 0, 86, 0, 39, 0, 2, 84, 2, 0, 2
Offset: 1

Views

Author

Seiichi Manyama, Mar 24 2017

Keywords

Crossrefs

Cf. Sum_{d|n, d=k mod 5} d: A284097 (k=1), this sequence (k=2), A284281 (k=3), A284103 (k=4).

Programs

  • Mathematica
    Table[Sum[If[Mod[d, 5] == 2, d, 0], {d, Divisors[n]}], {n, 80}] (* Indranil Ghosh, Mar 24 2017 *)
  • PARI
    for(n=1, 80, print1(sumdiv(n, d, if(Mod(d, 5)==2, d, 0)), ", ")) \\ Indranil Ghosh, Mar 24 2017
    
  • Python
    from sympy import divisors
    def a(n): return sum([d for d in divisors(n) if d%5==2]) # Indranil Ghosh, Mar 24 2017

Formula

G.f.: Sum_{k>=0} (5*k + 2)*x^(5*k+2)/(1 - x^(5*k+2)). - Ilya Gutkovskiy, Mar 25 2017
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/60 = 0.164493... (A013661 / 10). - Amiram Eldar, Nov 26 2023

A284281 a(n) = Sum_{d|n, d == 3 (mod 5)} d.

Original entry on oeis.org

0, 0, 3, 0, 0, 3, 0, 8, 3, 0, 0, 3, 13, 0, 3, 8, 0, 21, 0, 0, 3, 0, 23, 11, 0, 13, 3, 28, 0, 3, 0, 8, 36, 0, 0, 21, 0, 38, 16, 8, 0, 3, 43, 0, 3, 23, 0, 59, 0, 0, 3, 13, 53, 21, 0, 36, 3, 58, 0, 3, 0, 0, 66, 8, 13, 36, 0, 68, 26, 0, 0, 29, 73, 0, 3, 38, 0, 94, 0, 8
Offset: 1

Views

Author

Seiichi Manyama, Mar 24 2017

Keywords

Crossrefs

Cf. Sum_{d|n, d=k mod 5} d: A284097 (k=1), A284280 (k=2), this sequence (k=3), A284103 (k=4).

Programs

  • Mathematica
    Table[Sum[If[Mod[d, 5] == 3, d, 0], {d, Divisors[n]}], {n, 80}] (* Indranil Ghosh, Mar 24 2017 *)
  • PARI
    for(n=1, 82, print1(sumdiv(n, d, if(Mod(d, 5)==3, d, 0)),", ")) \\ Indranil Ghosh, Mar 24 2017
    
  • Python
    from sympy import divisors
    def a(n): return sum([d for d in divisors(n) if d%5==3]) # Indranil Ghosh, Mar 24 2017

Formula

G.f.: Sum_{k>=0} (5*k + 3)*x^(5*k+3)/(1 - x^(5*k+3)). - Ilya Gutkovskiy, Mar 25 2017
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/60 = 0.164493... (A013661 / 10). - Amiram Eldar, Nov 26 2023

A109700 Number of partitions of n into parts each equal to 4 mod 5.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 2, 3, 4, 2, 2, 3, 5, 4, 3, 3, 6, 6, 6, 4, 6, 7, 9, 7, 7, 8, 11, 11, 11, 9, 12, 14, 16, 13, 14, 16, 21, 20, 19, 18, 24, 26, 27, 24, 27, 31, 36, 34, 34, 35, 43, 45, 47, 43, 49, 55, 62, 58, 59, 63, 75, 77, 77, 75, 87
Offset: 0

Views

Author

Erich Friedman, Aug 07 2005

Keywords

Examples

			a(30)=2 since 30 = 14+4+4+4+4 = 9+9+4+4+4
		

Crossrefs

Cf. A284103.
Cf. similar sequences of number of partitions of n into parts congruent to m-1 mod m: A000009 (m=2), A035386 (m=3), A035462 (m=4), this sequence (m=5), A109702 (m=6), A109708 (m=7).

Programs

  • Maple
    g:=1/product(1-x^(4+5*j),j=0..25): gser:=series(g,x=0,95): seq(coeff(gser,x,n),n=0..90); # Emeric Deutsch, Mar 30 2006
  • Mathematica
    nmax=100; CoefficientList[Series[Product[1/(1-x^(5*k+4)), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 27 2015 *)

Formula

G.f.: 1/product(1-x^(4+5j), j=0..infinity). - Emeric Deutsch, Mar 30 2006
a(n) ~ Gamma(4/5) * exp(Pi*sqrt(2*n/15)) / (2^(19/10) * 3^(2/5) * 5^(1/10) * Pi^(1/5) * n^(9/10)) * (1 - (9*sqrt(6/5)/(5*Pi) + Pi/(120*sqrt(30))) / sqrt(n)). - Vaclav Kotesovec, Feb 27 2015, extended Jan 24 2017
a(n) = (1/n)*Sum_{k=1..n} A284103(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 20 2017

Extensions

More terms from Michael Somos, Aug 10 2005

A284317 Expansion of Product_{k>=0} (1 - x^(5*k+4)) in powers of x.

Original entry on oeis.org

1, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 2, -1, 0, 0, -1, 2, -1, 0, 0, -1, 3, -1, 0, 0, -2, 3, -1, 0, 0, -3, 4, -1, 0, 1, -4, 4, -1, 0, 1, -5, 5, -1, 0, 2, -7, 5, -1, 0, 3, -8, 6, -1, 0, 5, -10, 6, -1, -1, 6, -12, 7, -1, -1, 9, -14
Offset: 0

Views

Author

Seiichi Manyama, Mar 25 2017

Keywords

Crossrefs

Cf. Product_{k>=0} (1 - x^(m*k+m-1)): A081362 (m=2), A284315 (m=3), A284316 (m=4), this sequence (m=5).

Programs

  • Maple
    S:= series(mul(1-x^(5*k+4),k=0..200),x,101):
    seq(coeff(S,x,j),j=0..100); # Robert Israel, Mar 27 2017
  • Mathematica
    CoefficientList[Series[Product[1 - x^(5k + 4), {k, 0, 100}], {x, 0, 100}], x] (* Indranil Ghosh, Mar 25 2017 *)
  • PARI
    Vec(prod(k=0, 100, 1 - x^(5*k + 4)) + O(x^101)) \\ Indranil Ghosh, Mar 25 2017

Formula

a(n) = -(1/n)*Sum_{k=1..n} A284103(k)*a(n-k), a(0) = 1.
G.f. is the QPochhammer symbol (x^4;x^5)infinity. - _Robert Israel, Mar 27 2017

A363900 Expansion of Sum_{k>0} k * x^(4*k) / (1 - x^(5*k)).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 3, 0, 1, 0, 4, 0, 2, 1, 5, 0, 0, 0, 7, 0, 0, 3, 9, 1, 0, 0, 8, 0, 1, 0, 13, 0, 2, 1, 10, 0, 3, 0, 12, 5, 0, 0, 14, 1, 0, 0, 13, 0, 7, 0, 18, 3, 2, 1, 15, 0, 0, 7, 17, 0, 0, 0, 19, 1, 5, 0, 29, 0, 1, 0, 23, 0, 2, 1, 20, 9, 0, 0, 28, 0, 0, 3, 24, 1, 10, 0, 23, 0, 1, 5, 28, 0
Offset: 1

Views

Author

Seiichi Manyama, Jun 27 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # &, Mod[n/#, 5] == 4 &]; Array[a, 100] (* Amiram Eldar, Jun 27 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (n/d%5==4)*d);

Formula

a(n) = Sum_{d|n, n/d==4 mod 5} d.
G.f.: Sum_{k>0} x^(5*k-1) / (1 - x^(5*k-1))^2.

A284104 a(n) = Sum_{d|n, d == 5 (mod 6)} d.

Original entry on oeis.org

0, 0, 0, 0, 5, 0, 0, 0, 0, 5, 11, 0, 0, 0, 5, 0, 17, 0, 0, 5, 0, 11, 23, 0, 5, 0, 0, 0, 29, 5, 0, 0, 11, 17, 40, 0, 0, 0, 0, 5, 41, 0, 0, 11, 5, 23, 47, 0, 0, 5, 17, 0, 53, 0, 16, 0, 0, 29, 59, 5, 0, 0, 0, 0, 70, 11, 0, 17, 23, 40, 71, 0, 0, 0, 5, 0, 88, 0, 0, 5
Offset: 1

Views

Author

Seiichi Manyama, Mar 20 2017

Keywords

Crossrefs

Cf. Sum_{d|n, d=k-1 mod k} d: A000593 (k=2), A078182 (k=3), A050452 (k=4), A284103 (k=5), this sequence (k=6), A284105 (k=7).

Programs

  • Mathematica
    Table[Sum[If[Mod[d, 6] == 5, d, 0], {d, Divisors[n]}], {n, 80}] (* Indranil Ghosh, Mar 21 2017 *)
    Table[Total[Select[Divisors[n],Mod[#,6]==5&]],{n,80}] (* Harvey P. Dale, Dec 30 2017 *)
  • PARI
    for(n=1, 80, print1(sumdiv(n, d, if(Mod(d,6)==5, d, 0)),", ")) \\ Indranil Ghosh, Mar 21 2017
    
  • Python
    from sympy import divisors
    def a(n): return sum([d for d in divisors(n) if d%6==5]) # Indranil Ghosh, Mar 21 2017

Formula

G.f.: Sum_{k>=1} (6*k - 1)*x^(6*k-1)/(1 - x^(6*k-1)). - Ilya Gutkovskiy, Mar 21 2017
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/72 = 0.137077... (A086729). - Amiram Eldar, Nov 26 2023

A284150 Sum_{d|n, d==1 or 4 mod 5} d.

Original entry on oeis.org

1, 1, 1, 5, 1, 7, 1, 5, 10, 1, 12, 11, 1, 15, 1, 21, 1, 16, 20, 5, 22, 12, 1, 35, 1, 27, 10, 19, 30, 7, 32, 21, 12, 35, 1, 56, 1, 20, 40, 5, 42, 42, 1, 60, 10, 47, 1, 51, 50, 1, 52, 31, 1, 70, 12, 75, 20, 30, 60, 11, 62, 32, 31, 85, 1, 84, 1, 39, 70, 15, 72, 80, 1
Offset: 1

Views

Author

Seiichi Manyama, Mar 21 2017

Keywords

Crossrefs

Cf. Sum_{d|n, d==1 or k-1 mod k} d: A046913 (k=3), A000593 (k=4), this sequence (k=5), A186099 (k=6), A284151 (k=7).

Programs

  • Maple
    A284150 := proc(n)
        a := 0 ;
        for d in numtheory[divisors](n) do
            if modp(d,5) in {1,4} then
                a := a+d ;
            end if;
        end do:
        a ;
    end proc: # R. J. Mathar, Mar 21 2017
  • Mathematica
    Table[Sum[If[Mod[d, 5] == 1 || Mod[d,5]==4, d, 0], {d, Divisors[n]}], {n, 80}] (* Indranil Ghosh, Mar 21 2017 *)
  • PARI
    for(n=1, 80, print1(sumdiv(n, d, if(d%5==1 || d%5 ==4, d, 0)), ", ")) \\ Indranil Ghosh, Mar 21 2017
    
  • Python
    from sympy import divisors
    def a(n): return sum([d for d in divisors(n) if d%5==1 or d%5 == 4]) # Indranil Ghosh, Mar 21 2017

Formula

a(n) = A284097(n) + A284103(n). - Seiichi Manyama, Mar 24 2017

A363929 Expansion of Sum_{k>0} x^(4*k) / (1 - x^(5*k))^2.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 1, 0, 3, 0, 1, 0, 2, 4, 1, 0, 0, 0, 6, 0, 0, 2, 4, 6, 0, 0, 1, 0, 7, 0, 3, 0, 4, 8, 1, 0, 3, 0, 10, 2, 0, 0, 6, 10, 0, 0, 1, 0, 13, 0, 4, 4, 6, 12, 1, 0, 0, 2, 14, 0, 0, 0, 8, 14, 3, 0, 8, 0, 15, 0, 5, 0, 8, 16, 1, 2, 0, 0, 21, 0, 0, 6, 10, 18, 2, 0, 1, 0, 19, 4, 6, 0, 13, 22, 1, 0, 7, 0, 22, 0, 0, 0, 14, 22, 0, 0
Offset: 1

Views

Author

Seiichi Manyama, Jun 28 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # + 1 &, Mod[#, 5] == 4 &] / 5; Array[a, 100] (* Amiram Eldar, Jun 28 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (d%5==4)*(d+1))/5;

Formula

a(n) = (1/5) * Sum_{d|n, d==4 mod 5} (d+1) = (A001899(n) + A284103(n))/5.
G.f.: Sum_{k>0} k * x^(5*k-1) / (1 - x^(5*k-1)).
Showing 1-10 of 14 results. Next