cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A109091 Expansion of (1 - eta(q)^5 / eta(q^5)) / 5 in powers of q.

Original entry on oeis.org

1, -1, -2, 3, 1, 2, -6, -5, 7, -1, 12, -6, -12, 6, -2, 11, -16, -7, 20, 3, 12, -12, -22, 10, 1, 12, -20, -18, 30, 2, 32, -21, -24, 16, -6, 21, -36, -20, 24, -5, 42, -12, -42, 36, 7, 22, -46, -22, 43, -1, 32, -36, -52, 20, 12, 30, -40, -30, 60, -6, 62, -32, -42, 43, -12, 24, -66, -48, 44, 6, 72, -35, -72, 36, -2, 60, -72
Offset: 1

Views

Author

Michael Somos, Jun 18 2005

Keywords

Examples

			G.f. = q - q^2 - 2*q^3 + 3*q^4 + q^5 + 2*q^6 - 6*q^7 - 5*q^8 + 7*q^9 - q^10 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ d KroneckerSymbol[ 5, d], {d, Divisors@n}]]; (* Michael Somos, Apr 26 2015 *)
    a[ n_] := SeriesCoefficient[ (1 - QPochhammer[ q]^5 / QPochhammer[ q^5]) / 5, {q, 0, n}]; (* Michael Somos, Apr 26 2015 *)
  • PARI
    {a(n) = my(A); if( n<1, 0, A = x * O(x^n); -1/5 * polcoeff( eta(x + A)^5 / eta(x^5 + A), n))};
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, d * kronecker(5, d)))} /* Michael Somos, Mar 21 2008 */
    
  • Ruby
    def s(k, m, n)
      s = 0
      (1..n).each{|i| s += i if n % i == 0 && i % k == m}
      s
    end
    def A109091(n)
      (1..n).map{|i| s(5, 1, i) + s(5, 4, i) - s(5, 2, i) - s(5, 3, i)}
    end # Seiichi Manyama, Apr 01 2017

Formula

G.f.: (1 - Product_{k>0} (1 - x^k)^5 / (1 - x^(5*k))) / 5 = Sum_{k>0} x^k * (1 - x^k)^2 * (1 + x^(6*k) - 4*x^(2*k) * (1 + x^k +x^(2*k))) / (1 - x^(5*k))^2.
-5*a(n) = A109064(n) unless n = 0.
a(n) = A284097(n) + A284103(n) - A284280(n) - A284281(n) = A284150(n) - A284152(n). - Seiichi Manyama, Apr 01 2017
L.g.f.: -log(1/(1 + x/(1 + x^2/(1 + x^3/(1 + x^4/(1 + x^5/(1 + ...))))))) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 10 2017
Sum_{k=1..n} abs(a(k)) ~ c * n^2, where c = Pi^2/(15*sqrt(5)) = 0.294254... . - Amiram Eldar, Jan 29 2024

A284281 a(n) = Sum_{d|n, d == 3 (mod 5)} d.

Original entry on oeis.org

0, 0, 3, 0, 0, 3, 0, 8, 3, 0, 0, 3, 13, 0, 3, 8, 0, 21, 0, 0, 3, 0, 23, 11, 0, 13, 3, 28, 0, 3, 0, 8, 36, 0, 0, 21, 0, 38, 16, 8, 0, 3, 43, 0, 3, 23, 0, 59, 0, 0, 3, 13, 53, 21, 0, 36, 3, 58, 0, 3, 0, 0, 66, 8, 13, 36, 0, 68, 26, 0, 0, 29, 73, 0, 3, 38, 0, 94, 0, 8
Offset: 1

Views

Author

Seiichi Manyama, Mar 24 2017

Keywords

Crossrefs

Cf. Sum_{d|n, d=k mod 5} d: A284097 (k=1), A284280 (k=2), this sequence (k=3), A284103 (k=4).

Programs

  • Mathematica
    Table[Sum[If[Mod[d, 5] == 3, d, 0], {d, Divisors[n]}], {n, 80}] (* Indranil Ghosh, Mar 24 2017 *)
  • PARI
    for(n=1, 82, print1(sumdiv(n, d, if(Mod(d, 5)==3, d, 0)),", ")) \\ Indranil Ghosh, Mar 24 2017
    
  • Python
    from sympy import divisors
    def a(n): return sum([d for d in divisors(n) if d%5==3]) # Indranil Ghosh, Mar 24 2017

Formula

G.f.: Sum_{k>=0} (5*k + 3)*x^(5*k+3)/(1 - x^(5*k+3)). - Ilya Gutkovskiy, Mar 25 2017
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/60 = 0.164493... (A013661 / 10). - Amiram Eldar, Nov 26 2023

A284152 a(n) = Sum_{d|n, d == 2 or 3 mod 5} d.

Original entry on oeis.org

0, 2, 3, 2, 0, 5, 7, 10, 3, 2, 0, 17, 13, 9, 3, 10, 17, 23, 0, 2, 10, 24, 23, 25, 0, 15, 30, 37, 0, 5, 0, 42, 36, 19, 7, 35, 37, 40, 16, 10, 0, 54, 43, 24, 3, 25, 47, 73, 7, 2, 20, 67, 53, 50, 0, 45, 60, 60, 0, 17, 0, 64, 73, 42, 13, 60, 67, 87, 26, 9, 0, 115, 73
Offset: 1

Views

Author

Seiichi Manyama, Mar 21 2017

Keywords

Examples

			Divisors of 12 are 1 2 3 4 6 12.
And 2 == 12 mod 5.
We get a(12) = 2 + 3 + 12 = 17.
		

Crossrefs

Cf. A003106, A284150 (Sum_{d|n, d==1 or 4 mod 5} d).

Formula

a(n) = A000203(n) -5*A000203(n/5) -A284150(n), where A000203(.) =0 for non-integer arguments. - R. J. Mathar, Mar 21 2017
a(n) = A284280(n) + A284281(n). - Seiichi Manyama, Mar 24 2017

A363027 Sum of divisors of 5*n-4 of form 5*k+2.

Original entry on oeis.org

0, 2, 0, 2, 7, 2, 0, 14, 0, 2, 17, 9, 0, 24, 0, 2, 27, 2, 7, 46, 0, 2, 37, 2, 0, 51, 0, 19, 47, 2, 0, 66, 7, 2, 57, 24, 0, 64, 0, 9, 67, 2, 0, 113, 17, 2, 84, 2, 0, 84, 0, 34, 87, 9, 0, 106, 0, 24, 97, 39, 7, 121, 0, 2, 107, 2, 0, 175, 0, 2, 144, 2, 0, 124, 7, 49, 127, 2, 17, 168, 0, 9, 137, 86, 0, 144, 0, 2
Offset: 1

Views

Author

Seiichi Manyama, Jul 06 2023

Keywords

Crossrefs

Programs

  • Maple
    f:= n ->
      convert(select(t -> t mod 5 = 2, numtheory:-divisors(5*n-4)),`+`):
    map(f, [$1..100]); # Robert Israel, Jul 23 2023
  • Mathematica
    a[n_] := DivisorSum[5*n - 4, # &, Mod[#, 5] == 2 &]; Array[a, 100] (* Amiram Eldar, Jul 06 2023 *)
    Table[Total[Select[Divisors[5n-4],Mod[#,5]==2&]],{n,90}] (* Harvey P. Dale, Feb 01 2025 *)
  • PARI
    a(n) = sumdiv(5*n-4, d, (d%5==2)*d);

Formula

a(n) = A284280(5*n-4).
G.f.: Sum_{k>0} (5*k-3) * x^(3*k-1) / (1 - x^(5*k-3)).

A363898 Expansion of Sum_{k>0} k * x^(2*k) / (1 - x^(5*k)).

Original entry on oeis.org

0, 1, 0, 2, 0, 3, 1, 4, 0, 5, 0, 7, 0, 9, 0, 8, 1, 9, 0, 10, 3, 12, 0, 14, 0, 13, 1, 18, 0, 15, 0, 17, 0, 19, 5, 21, 1, 19, 0, 20, 0, 28, 0, 24, 0, 23, 1, 28, 7, 25, 3, 27, 0, 29, 0, 36, 1, 29, 0, 35, 0, 32, 9, 34, 0, 36, 1, 38, 0, 45, 0, 43, 0, 39, 0, 38, 12, 39, 0, 40, 3, 42, 0, 63, 5, 43, 1
Offset: 1

Views

Author

Seiichi Manyama, Jun 27 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # &, Mod[n/#, 5] == 2 &]; Array[a, 100] (* Amiram Eldar, Jun 27 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (n/d%5==2)*d);

Formula

a(n) = Sum_{d|n, n/d==2 mod 5} d.
G.f.: Sum_{k>0} x^(5*k-3) / (1 - x^(5*k-3))^2.

A109698 Number of partitions of n into parts each congruent to 2 mod 5.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 3, 2, 3, 3, 3, 4, 4, 4, 6, 4, 7, 5, 8, 7, 8, 9, 9, 10, 12, 11, 15, 12, 17, 15, 18, 19, 20, 22, 24, 24, 29, 26, 34, 31, 37, 38, 40, 44, 46, 49, 55, 53, 64, 60, 71, 71, 77, 83, 86, 93, 100, 101, 116, 112, 130, 129, 142, 149, 156, 168, 177
Offset: 0

Views

Author

Erich Friedman, Aug 07 2005

Keywords

Examples

			a(12)=2 since 12 = 12 = 2+2+2+2+2+2.
		

Crossrefs

Cf. A284280.

Programs

  • Maple
    g:=1/product(1-x^(2+5*i),i=0..20): gser:=series(g,x=0,86): seq(coeff(gser,x,n),n=0..82); # Emeric Deutsch, Feb 15 2006
  • Mathematica
    nmax=100; CoefficientList[Series[Product[1/(1-x^(5*k+2)),{k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 27 2015 *)
  • PARI
    Vec(prod(k=0, 100, 1/(1 - x^(5*k + 2))) + O(x^111)) \\ Indranil Ghosh, Mar 24 2017

Formula

G.f.: 1/Product_{j>=0} (1 - x^(2+5j)). - Emeric Deutsch, Feb 15 2006
a(n) ~ Gamma(2/5) * exp(Pi*sqrt(2*n/15)) / (2^(17/10) * 3^(1/5) * 5^(3/10)*Pi^(3/5) * n^(7/10)) * (1 + (11*Pi/(120*sqrt(30)) - 7*sqrt(3/10)/(5*Pi)) / sqrt(n)). - Vaclav Kotesovec, Feb 27 2015, extended Jan 24 2017
a(n) = (1/n)*Sum_{k=1..n} A284280(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 24 2017

Extensions

More terms from Emeric Deutsch, Feb 15 2006

A362952 Sum of divisors of 5*n-1 of form 5*k+2.

Original entry on oeis.org

2, 0, 9, 0, 14, 0, 19, 0, 24, 7, 29, 0, 34, 0, 39, 0, 63, 0, 49, 0, 54, 0, 59, 24, 64, 0, 69, 0, 86, 0, 108, 0, 84, 0, 89, 0, 94, 34, 99, 0, 133, 0, 109, 0, 153, 0, 119, 0, 124, 0, 129, 44, 168, 0, 139, 0, 144, 17, 198, 0, 154, 0, 159, 0, 203, 54, 169, 0, 174, 0, 179, 0, 243, 0, 228, 0, 238, 0, 199, 64, 204
Offset: 1

Views

Author

Seiichi Manyama, Jul 06 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[5*n - 1, # &, Mod[#, 5] == 2 &]; Array[a, 100] (* Amiram Eldar, Jul 06 2023 *)
  • PARI
    a(n) = sumdiv(5*n-1, d, (d%5==2)*d);

Formula

a(n) = A284280(5*n-1).
G.f.: Sum_{k>0} (5*k-3) * x^(2*k-1) / (1 - x^(5*k-3)).

A363025 Sum of divisors of 5*n-2 of form 5*k+2.

Original entry on oeis.org

0, 2, 0, 2, 0, 9, 0, 2, 0, 14, 0, 2, 7, 19, 0, 2, 0, 24, 0, 9, 0, 41, 0, 2, 0, 34, 7, 2, 0, 39, 17, 2, 0, 63, 0, 2, 0, 49, 0, 24, 7, 54, 0, 2, 0, 71, 0, 26, 27, 64, 0, 2, 0, 69, 7, 2, 0, 118, 0, 2, 0, 108, 0, 2, 17, 84, 37, 2, 7, 101, 0, 2, 0, 94, 0, 78, 0, 99, 0, 2, 0, 133, 7, 24, 47, 109, 0, 2, 0, 153, 0
Offset: 1

Views

Author

Seiichi Manyama, Jul 06 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[5*n - 2, # &, Mod[#, 5] == 2 &]; Array[a, 100] (* Amiram Eldar, Jul 06 2023 *)
  • PARI
    a(n) = sumdiv(5*n-2, d, (d%5==2)*d);

Formula

a(n) = A284280(5*n-2).
G.f.: Sum_{k>0} (5*k-3) * x^(4*k-2) / (1 - x^(5*k-3)).

A363026 Sum of divisors of 5*n-3 of form 5*k+2.

Original entry on oeis.org

2, 7, 14, 17, 24, 27, 34, 37, 51, 47, 54, 57, 64, 67, 86, 84, 84, 87, 94, 97, 121, 107, 121, 117, 124, 127, 168, 137, 144, 154, 154, 157, 191, 167, 174, 177, 191, 204, 238, 197, 204, 207, 214, 224, 261, 227, 234, 237, 266, 247, 315, 257, 264, 267, 291, 277, 331, 294, 294, 324, 304, 307, 378, 317, 331, 327
Offset: 1

Views

Author

Seiichi Manyama, Jul 06 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[5*n - 3, # &, Mod[#, 5] == 2 &]; Array[a, 100] (* Amiram Eldar, Jul 06 2023 *)
  • PARI
    a(n) = sumdiv(5*n-3, d, (d%5==2)*d);

Formula

a(n) = A284280(5*n-3).
G.f.: Sum_{k>0} (5*k-3) * x^k / (1 - x^(5*k-3)).

A363926 Expansion of Sum_{k>0} x^(2*k) / (1 - x^(5*k))^2.

Original entry on oeis.org

0, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 4, 0, 3, 0, 1, 4, 1, 0, 1, 2, 6, 0, 4, 0, 1, 6, 3, 0, 1, 0, 8, 0, 5, 2, 4, 8, 1, 0, 1, 0, 12, 0, 6, 0, 1, 10, 4, 2, 1, 4, 12, 0, 7, 0, 3, 12, 1, 0, 4, 0, 14, 2, 8, 0, 6, 14, 5, 0, 3, 0, 19, 0, 9, 0, 1, 18, 1, 0, 1, 6, 18, 0, 15, 4, 1, 18, 6, 0, 1, 2, 20, 0
Offset: 1

Views

Author

Seiichi Manyama, Jun 28 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # + 3 &, Mod[#, 5] == 2 &] / 5; Array[a, 100] (* Amiram Eldar, Jun 28 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (d%5==2)*(d+3))/5;

Formula

a(n) = (1/5) * Sum_{d|n, d==2 mod 5} (d+3) = (3 * A001877(n) + A284280(n))/5.
G.f.: Sum_{k>0} k * x^(5*k-3) / (1 - x^(5*k-3)).
Showing 1-10 of 11 results. Next