A003114 Number of partitions of n into parts 5k+1 or 5k+4.
1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 10, 12, 14, 17, 19, 23, 26, 31, 35, 41, 46, 54, 61, 70, 79, 91, 102, 117, 131, 149, 167, 189, 211, 239, 266, 299, 333, 374, 415, 465, 515, 575, 637, 709, 783, 871, 961, 1065, 1174, 1299, 1429, 1579, 1735, 1913, 2100, 2311, 2533, 2785
Offset: 0
Examples
G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 3*x^7 + 4*x^8 + 5*x^9 + ... G.f. = 1/q + q^59 + q^119 + q^179 + 2*q^239 + 2*q^299 + 3*q^359 + 3*q^419 + ... From _Joerg Arndt_, Dec 27 2012: (Start) The a(16)=17 partitions of 16 where all parts are 1 or 4 (mod 5) are [ 1] [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ] [ 2] [ 4 1 1 1 1 1 1 1 1 1 1 1 1 ] [ 3] [ 4 4 1 1 1 1 1 1 1 1 ] [ 4] [ 4 4 4 1 1 1 1 ] [ 5] [ 4 4 4 4 ] [ 6] [ 6 1 1 1 1 1 1 1 1 1 1 ] [ 7] [ 6 4 1 1 1 1 1 1 ] [ 8] [ 6 4 4 1 1 ] [ 9] [ 6 6 1 1 1 1 ] [10] [ 6 6 4 ] [11] [ 9 1 1 1 1 1 1 1 ] [12] [ 9 4 1 1 1 ] [13] [ 9 6 1 ] [14] [ 11 1 1 1 1 1 ] [15] [ 11 4 1 ] [16] [ 14 1 1 ] [17] [ 16 ] The a(16)=17 partitions of 16 where successive parts differ by at least 2 are [ 1] [ 7 5 3 1 ] [ 2] [ 8 5 3 ] [ 3] [ 8 6 2 ] [ 4] [ 9 5 2 ] [ 5] [ 9 6 1 ] [ 6] [ 9 7 ] [ 7] [ 10 4 2 ] [ 8] [ 10 5 1 ] [ 9] [ 10 6 ] [10] [ 11 4 1 ] [11] [ 11 5 ] [12] [ 12 3 1 ] [13] [ 12 4 ] [14] [ 13 3 ] [15] [ 14 2 ] [16] [ 15 1 ] [17] [ 16 ] (End)
References
- G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109, 238.
- G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, 1999; Exercise 6(e), p. 591.
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 669.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 107.
- G. H. Hardy, Ramanujan, AMS Chelsea Publ., Providence, RI, 2002, pp. 90-92.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth ed., Clarendon Press, Oxford, 2003, pp. 290-291.
- H. P. Robinson, Letter to N. J. A. Sloane, Jan 04 1974.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
- George E. Andrews, Three aspects of partitions, Séminaire Lotharingien de Combinatoire, B25f (1990), 1 p.
- George E. Andrews, Euler's "De Partitio Numerorum", Bull. Amer. Math. Soc., 44 (No. 4, 2007), 561-573.
- George E. Andrews; R. J. Baxter, A motivated proof of the Rogers-Ramanujan identities, Amer. Math. Monthly 96 (1989), no. 5, 401-409.
- M. Archibald, A. Blecher, S. Elizalde, and A. Knopfmacher, Subdiagonal and superdiagonal partitions, Afr. Mat. 36, 77 (2025). See p. 14.
- R. K. Guy, Letter to N. J. A. Sloane, Sep 25 1986.
- R. K. Guy, Letter to N. J. A. Sloane, 1987
- R. K. Guy, Letter to N. J. A. Sloane, 1988-04-12 (annotated scanned copy)
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712.
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
- P. Jacob and P. Mathieu, Parafermionic derivation of Andrews-type multiple-sums, arXiv:hep-th/0505097, 2005.
- James Lepowsky and Minxian Zhu, A motivated proof of Gordon's identities, The Ramanujan Journal 29.1-3 (2012): 199-211.
- I. Martinjak, D. Svrtan, New Identities for the Polarized Partitions and Partitions with d-Distant Parts, J. Int. Seq. 17 (2014) # 14.11.4.
- Herman P. Robinson, Letter to N. J. A. Sloane, Jan 1974.
- A. V. Sills, Finite Rogers-Ramanujan type identities, Electron. J. Combin. 10 (2003), Research Paper 13, 122 pp.
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Rogers-Ramanujan Identities.
- Mingjia Yang, Doron Zeilberger, Systematic Counting of Restricted Partitions, arXiv:1910.08989 [math.CO], 2019.
Crossrefs
Programs
-
Haskell
a003114 = p a047209_list where p _ 0 = 1 p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m -- Reinhard Zumkeller, Jan 05 2011
-
Haskell
a003114 = p 1 where p _ 0 = 1 p k m = if k > m then 0 else p (k + 2) (m - k) + p (k + 1) m -- Reinhard Zumkeller, Feb 19 2013
-
Maple
g:=sum(x^(k^2)/product(1-x^j,j=1..k),k=0..10): gser:=series(g,x=0,65): seq(coeff(gser,x,n),n=0..60); # Emeric Deutsch, Feb 27 2006
-
Mathematica
CoefficientList[ Series[Sum[x^k^2/Product[1 - x^j, {j, 1, k}], {k, 0, 10}], {x, 0, 65}], x][[1 ;; 61]] (* Jean-François Alcover, Apr 08 2011, after Emeric Deutsch *) Table[Count[IntegerPartitions[n], p_ /; Min[p] >= Length[p]], {n, 0, 24}] (* Clark Kimberling, Feb 13 2014 *) a[ n_] := SeriesCoefficient[ 1 / (QPochhammer[ x^1, x^5] QPochhammer[ x^4, x^5]), {x, 0, n}]; (* Michael Somos, May 17 2015 *) a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^{-1, 0, 0, -1, 0}[[Mod[k, 5, 1]]], {k, n}], {x, 0, n}]; (* Michael Somos, May 17 2015 *) nmax = 60; kmax = nmax/5; s = Flatten[{Range[0, kmax]*5 + 1}~Join~{Range[0, kmax]*5 + 4}]; Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Aug 02 2020 *)
-
PARI
{a(n) = my(t); if( n<0, 0, t = 1 + x * O(x^n); polcoeff( sum(k=1, sqrtint(n), t *= x^(2*k - 1) / (1 - x^k) * (1 + x * O(x^(n - k^2))), 1), n))}; /* Michael Somos, Oct 15 2008 */
Formula
G.f.: Sum_{k>=0} x^(k^2)/(Product_{i=1..k} 1-x^i).
The g.f. above is the special case D=2 of sum(n>=0, x^(D*n*(n+1)/2 - (D-1)*n) / prod(k=1..n, 1-x^k) ), the g.f. for partitions into distinct part where the difference between successive parts is >= D. - Joerg Arndt, Mar 31 2014
G.f.: 1 + sum(i=1, oo, x^(5i+1)/prod(j=1 or 4 mod 5 and j<=5i+1, 1-x^j) + x^(5i+4)/prod(j=1 or 4 mod 5 and j<=5i+4, 1-x^j)). - Jon Perry, Jul 06 2004
G.f.: (Product_{k>0} 1 + x^(2*k)) * (Sum_{k>=0} x^(k^2) / (Product_{i=1..k} 1 - x^(4*i))). - Michael Somos, Oct 19 2006
Euler transform of period 5 sequence [ 1, 0, 0, 1, 0, ...]. - Michael Somos, Oct 15 2008
Expansion of f(-x^5) / f(-x^1, -x^4) in powers of x where f(,) is the Ramanujan general theta function. - Michael Somos, May 17 2015
Expansion of f(-x^2, -x^3) / f(-x) in powers of x where f(,) is the Ramanujan general theta function. - Michael Somos, Jun 13 2015
a(n) ~ phi^(1/2) * exp(2*Pi*sqrt(n/15)) / (2 * 3^(1/4) * 5^(1/2) * n^(3/4)) * (1 - (3*sqrt(15)/(16*Pi) + Pi/(60*sqrt(15))) / sqrt(n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Aug 23 2015, extended Jan 24 2017
a(n) = (1/n)*Sum_{k=1..n} A284150(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 21 2017
Comments