cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A003114 Number of partitions of n into parts 5k+1 or 5k+4.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 10, 12, 14, 17, 19, 23, 26, 31, 35, 41, 46, 54, 61, 70, 79, 91, 102, 117, 131, 149, 167, 189, 211, 239, 266, 299, 333, 374, 415, 465, 515, 575, 637, 709, 783, 871, 961, 1065, 1174, 1299, 1429, 1579, 1735, 1913, 2100, 2311, 2533, 2785
Offset: 0

Views

Author

Keywords

Comments

Expansion of Rogers-Ramanujan function G(x) in powers of x.
Same as number of partitions into distinct parts where the difference between successive parts is >= 2.
As a formal power series, the limit of polynomials S(n,x): S(n,x)=sum(T(i,x),0<=i<=n); T(i,x)=S(i-2,x).x^i; T(0,x)=1,T(1,x)=x; S(n,1)=A000045(n+1), the Fibonacci sequence. - Claude Lenormand (claude.lenormand(AT)free.fr), Feb 04 2001
The Rogers-Ramanujan identity is 1 + Sum_{n >= 1} t^(n^2)/((1-t)*(1-t^2)*...*(1-t^n)) = Product_{n >= 1} 1/((1-t^(5*n-1))*(1-t^(5*n-4))).
Coefficients in expansion of permanent of infinite tridiagonal matrix:
1 1 0 0 0 0 0 0 ...
x 1 1 0 0 0 0 0 ...
0 x^2 1 1 0 0 0 ...
0 0 x^3 1 1 0 0 ...
0 0 0 x^4 1 1 0 ...
................... - Vladeta Jovovic, Jul 17 2004
Also number of partitions of n such that the smallest part is greater than or equal to number of parts. - Vladeta Jovovic, Jul 17 2004
Also number of partitions of n such that if k is the largest part, then each of {1, 2, ..., k-1} occur at least twice. Example: a(9)=5 because we have [3, 2, 2, 1, 1], [2, 2, 2, 1, 1, 1], [2, 2, 1, 1, 1, 1, 1], [2, 1, 1, 1, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1]. - Emeric Deutsch, Feb 27 2006
Also number of partitions of n such that if k is the largest part, then k occurs at least k times. Example: a(9)=5 because we have [3, 3, 3], [2, 2, 2, 2, 1], [2, 2, 2, 1, 1, 1], [2, 2, 1, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1]. - Emeric Deutsch, Apr 16 2006
a(n) = number of NW partitions of n, for n >= 1; see A237981.
For more about the generalized Rogers-Ramanujan series G[i](x) see the Andrews-Baxter and Lepowsky-Zhu papers. The present series is G[1](x). - N. J. A. Sloane, Nov 22 2015
Convolution of A109700 and A109697. - Vaclav Kotesovec, Jan 21 2017

Examples

			G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 3*x^7 + 4*x^8 + 5*x^9 + ...
G.f. = 1/q + q^59 + q^119 + q^179 + 2*q^239 + 2*q^299 + 3*q^359 + 3*q^419 + ...
From _Joerg Arndt_, Dec 27 2012: (Start)
The a(16)=17 partitions of 16 where all parts are 1 or 4 (mod 5) are
  [ 1]  [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]
  [ 2]  [ 4 1 1 1 1 1 1 1 1 1 1 1 1 ]
  [ 3]  [ 4 4 1 1 1 1 1 1 1 1 ]
  [ 4]  [ 4 4 4 1 1 1 1 ]
  [ 5]  [ 4 4 4 4 ]
  [ 6]  [ 6 1 1 1 1 1 1 1 1 1 1 ]
  [ 7]  [ 6 4 1 1 1 1 1 1 ]
  [ 8]  [ 6 4 4 1 1 ]
  [ 9]  [ 6 6 1 1 1 1 ]
  [10]  [ 6 6 4 ]
  [11]  [ 9 1 1 1 1 1 1 1 ]
  [12]  [ 9 4 1 1 1 ]
  [13]  [ 9 6 1 ]
  [14]  [ 11 1 1 1 1 1 ]
  [15]  [ 11 4 1 ]
  [16]  [ 14 1 1 ]
  [17]  [ 16 ]
The a(16)=17 partitions of 16 where successive parts differ by at least 2 are
  [ 1]  [ 7 5 3 1 ]
  [ 2]  [ 8 5 3 ]
  [ 3]  [ 8 6 2 ]
  [ 4]  [ 9 5 2 ]
  [ 5]  [ 9 6 1 ]
  [ 6]  [ 9 7 ]
  [ 7]  [ 10 4 2 ]
  [ 8]  [ 10 5 1 ]
  [ 9]  [ 10 6 ]
  [10]  [ 11 4 1 ]
  [11]  [ 11 5 ]
  [12]  [ 12 3 1 ]
  [13]  [ 12 4 ]
  [14]  [ 13 3 ]
  [15]  [ 14 2 ]
  [16]  [ 15 1 ]
  [17]  [ 16 ]
(End)
		

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109, 238.
  • G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, 1999; Exercise 6(e), p. 591.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 669.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 107.
  • G. H. Hardy, Ramanujan, AMS Chelsea Publ., Providence, RI, 2002, pp. 90-92.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth ed., Clarendon Press, Oxford, 2003, pp. 290-291.
  • H. P. Robinson, Letter to N. J. A. Sloane, Jan 04 1974.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A188216 (least part k occurs at least k times).
For the generalized Rogers-Ramanujan series G[1], G[2], G[3], G[4], G[5], G[6], G[7], G[8] see A003114, A003106, A006141, A264591, A264592, A264593, A264594, A264595. G[0] = G[1]+G[2] is given by A003113.
Row sums of A268187.

Programs

  • Haskell
    a003114 = p a047209_list where
       p _      0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Jan 05 2011
    
  • Haskell
    a003114 = p 1 where
       p _ 0 = 1
       p k m = if k > m then 0 else p (k + 2) (m - k) + p (k + 1) m
    -- Reinhard Zumkeller, Feb 19 2013
  • Maple
    g:=sum(x^(k^2)/product(1-x^j,j=1..k),k=0..10): gser:=series(g,x=0,65): seq(coeff(gser,x,n),n=0..60); # Emeric Deutsch, Feb 27 2006
  • Mathematica
    CoefficientList[ Series[Sum[x^k^2/Product[1 - x^j, {j, 1, k}], {k, 0, 10}], {x, 0, 65}], x][[1 ;; 61]] (* Jean-François Alcover, Apr 08 2011, after Emeric Deutsch *)
    Table[Count[IntegerPartitions[n], p_ /; Min[p] >= Length[p]], {n, 0, 24}] (* Clark Kimberling, Feb 13 2014 *)
    a[ n_] := SeriesCoefficient[ 1 / (QPochhammer[ x^1, x^5] QPochhammer[ x^4, x^5]), {x, 0, n}]; (* Michael Somos, May 17 2015 *)
    a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^{-1, 0, 0, -1, 0}[[Mod[k, 5, 1]]], {k, n}], {x, 0, n}]; (* Michael Somos, May 17 2015 *)
    nmax = 60; kmax = nmax/5;
    s = Flatten[{Range[0, kmax]*5 + 1}~Join~{Range[0, kmax]*5 + 4}];
    Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Aug 02 2020 *)
  • PARI
    {a(n) = my(t); if( n<0, 0, t = 1 + x * O(x^n); polcoeff( sum(k=1, sqrtint(n), t *= x^(2*k - 1) / (1 - x^k) * (1 + x * O(x^(n - k^2))), 1), n))}; /* Michael Somos, Oct 15 2008 */
    

Formula

G.f.: Sum_{k>=0} x^(k^2)/(Product_{i=1..k} 1-x^i).
The g.f. above is the special case D=2 of sum(n>=0, x^(D*n*(n+1)/2 - (D-1)*n) / prod(k=1..n, 1-x^k) ), the g.f. for partitions into distinct part where the difference between successive parts is >= D. - Joerg Arndt, Mar 31 2014
G.f.: 1 + sum(i=1, oo, x^(5i+1)/prod(j=1 or 4 mod 5 and j<=5i+1, 1-x^j) + x^(5i+4)/prod(j=1 or 4 mod 5 and j<=5i+4, 1-x^j)). - Jon Perry, Jul 06 2004
G.f.: (Product_{k>0} 1 + x^(2*k)) * (Sum_{k>=0} x^(k^2) / (Product_{i=1..k} 1 - x^(4*i))). - Michael Somos, Oct 19 2006
Euler transform of period 5 sequence [ 1, 0, 0, 1, 0, ...]. - Michael Somos, Oct 15 2008
Expansion of f(-x^5) / f(-x^1, -x^4) in powers of x where f(,) is the Ramanujan general theta function. - Michael Somos, May 17 2015
Expansion of f(-x^2, -x^3) / f(-x) in powers of x where f(,) is the Ramanujan general theta function. - Michael Somos, Jun 13 2015
a(n) ~ phi^(1/2) * exp(2*Pi*sqrt(n/15)) / (2 * 3^(1/4) * 5^(1/2) * n^(3/4)) * (1 - (3*sqrt(15)/(16*Pi) + Pi/(60*sqrt(15))) / sqrt(n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Aug 23 2015, extended Jan 24 2017
a(n) = (1/n)*Sum_{k=1..n} A284150(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 21 2017

A284103 a(n) = Sum_{d|n, d == 4 (mod 5)} d.

Original entry on oeis.org

0, 0, 0, 4, 0, 0, 0, 4, 9, 0, 0, 4, 0, 14, 0, 4, 0, 9, 19, 4, 0, 0, 0, 28, 0, 0, 9, 18, 29, 0, 0, 4, 0, 34, 0, 13, 0, 19, 39, 4, 0, 14, 0, 48, 9, 0, 0, 28, 49, 0, 0, 4, 0, 63, 0, 18, 19, 29, 59, 4, 0, 0, 9, 68, 0, 0, 0, 38, 69, 14, 0, 37, 0, 74, 0, 23, 0, 39, 79
Offset: 1

Views

Author

Seiichi Manyama, Mar 20 2017

Keywords

Crossrefs

Cf. Sum_{d|n, d=k-1 mod k} d: A000593 (k=2), A078182 (k=3), A050452 (k=4), this sequence (k=5), A284104 (k=6), A284105 (k=7).

Programs

  • Mathematica
    Table[Sum[If[Mod[d, 5] == 4, d, 0], {d, Divisors[n]}], {n, 79}] (* Indranil Ghosh, Mar 21 2017 *)
    Table[Total[Select[Divisors[n],Mod[#,5]==4&]],{n,80}] (* Harvey P. Dale, Sep 24 2024 *)
  • PARI
    for(n=1, 79, print1(sumdiv(n, d, if(Mod(d, 5)==4, d, 0)), ", ")) \\ Indranil Ghosh, Mar 21 2017
    
  • Python
    from sympy import divisors
    def a(n): return sum([d for d in divisors(n) if d%5==4]) # Indranil Ghosh, Mar 21 2017

Formula

G.f.: Sum_{k>=1} (5*k - 1)*x^(5*k-1)/(1 - x^(5*k-1)). - Ilya Gutkovskiy, Mar 21 2017
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/60 = 0.164493... (A013661 / 10). - Amiram Eldar, Nov 26 2023

A035462 Number of partitions of n into parts 4k-1.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 1, 2, 3, 2, 2, 4, 4, 3, 4, 5, 5, 5, 6, 7, 8, 7, 8, 11, 10, 10, 13, 14, 14, 15, 17, 19, 20, 20, 24, 27, 26, 28, 33, 35, 35, 39, 44, 46, 48, 52, 58, 62, 63, 69, 78, 80, 83, 93, 100, 104, 111, 120, 130, 137, 143, 156, 169, 175, 185, 203
Offset: 0

Views

Author

Keywords

Comments

Also, number of partitions into parts 8k+3 or 8k+7.
Also number of partitions of n such that 2k-1 and 2k occur with the same multiplicity. Example: a(18)=3 because we have [8,7,2,1],[6,5,4,3] and [2,2,2,2,2,2,1,1,1,1,1,1]. It is easy to find a bijection between these partitions and those described in the definition. - Emeric Deutsch, Apr 05 2006

Examples

			a(18)=3 because we have [15,3],[11,7] and [3,3,3,3,3,3].
		

Crossrefs

Cf. similar sequences of number of partitions of n into parts congruent to m-1 mod m: A000009 (m=2), A035386 (m=3), this sequence (m=4), A109700 (m=5), A109702 (m=6), A109708 (m=7).

Programs

  • Maple
    g:=1/product(1-x^(4*i-1),i=1..50): gser:=series(g,x=0,80): seq(coeff(gser,x,n),n=1..75); # Emeric Deutsch, Apr 05 2006
  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1/(1-x^(4*k+3)),{k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 26 2015 *)
    nmax = 50; kmax = nmax/4; s = Range[0, kmax]*4 - 1;
    Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Aug 04 2020 *)

Formula

G.f.: 1/Product_{j>=1} (1 - x^(4*j-1)). - Emeric Deutsch, Apr 05 2006
G.f.: Sum_{n>=0} (x^(3*n) / Product_{k=1..n} (1 - x^(4*k))) = 1 + Sum_{n>=0} (x^(4*n+3) / Product_{k>=n} (1 - x^(4*k+3))) = 1 + Sum_{n>=0} (x^(4*n+3) / Product_{k=0..n} (1 - x^(4*k+3))). - Joerg Arndt, Apr 08 2011
a(n) ~ Pi^(3/4) * exp(Pi*sqrt(n/6)) / (Gamma(1/4) * 2^(13/8) * 3^(3/8) * n^(7/8)) * (1 + (Pi/(96*sqrt(6)) - 21*sqrt(3/2)/(16*Pi)) / sqrt(n)). - Vaclav Kotesovec, Feb 26 2015, extended Jan 24 2017
a(n) = (1/n)*Sum_{k=1..n} A050452(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 20 2017
From Peter Bala, Feb 02 2021: (Start)
G.f.: A(x) = Sum_{n >= 0} x^(n*(4*n-1))/Product_{k = 1..n} ( (1 - x^(4*k))*(1 - x^(4*k-1)) ). (Set z = x^3 and q = x^4 in Mc Laughlin et al., Section 1.3, Entry 7.)
Similarly, A(x) = Sum_{n >= 0} x^(n*(4*n+3))/( (1 - x^3)*Product_{k = 1..n} ((1 - x^(4*k))*(1 - x^(4*k+3))) ). (End)

Extensions

Offset changed by N. J. A. Sloane, Apr 11 2010

A109702 Number of partitions of n into parts each equal to 5 mod 6.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 2, 1, 0, 1, 1, 2, 2, 1, 1, 1, 2, 3, 3, 2, 1, 2, 3, 4, 4, 2, 2, 3, 5, 6, 5, 3, 3, 5, 7, 8, 6, 4, 5, 8, 10, 10, 8, 6, 8, 11, 13, 13, 10, 9, 12, 15, 18, 17, 14, 13, 16, 21, 23, 22, 18, 18, 23, 28, 31, 28, 24, 25, 31, 38, 39, 36, 32, 34
Offset: 0

Views

Author

Erich Friedman, Aug 07 2005

Keywords

Examples

			a(40)=4 since 40 = 35+5 = 29+11 = 23+17 = 5+5+5+5+5+5+5+5.
		

Crossrefs

Cf. A284104.
Cf. similar sequences of number of partitions of n into parts congruent to m-1 mod m: A000009 (m=2), A035386 (m=3), A035462 (m=4), A109700 (m=5), this sequence (m=6), A109708 (m=7).

Programs

Formula

G.f.: 1/product(1-x^(5+6j),j=0..infinity). - Emeric Deutsch, Apr 14 2006
a(n) ~ Gamma(5/6) * exp(Pi*sqrt(n)/3) / (4 * sqrt(3) * Pi^(1/6) * n^(11/12)) * (1 - (55/(24*Pi) + Pi/144) / sqrt(n)). - Vaclav Kotesovec, Feb 27 2015, extended Jan 24 2017
a(n) = (1/n)*Sum_{k=1..n} A284104(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 20 2017
Euler transform of period 6 sequence [ 0, 0, 0, 0, 1, 0, ...]. - Kevin T. Acres, Apr 28 2018

Extensions

Changed offset to 0 and added a(0)=1 by Vaclav Kotesovec, Feb 27 2015

A109708 Number of partitions of n into parts each equal to 6 mod 7.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 2, 1, 0, 0, 1, 1, 2, 2, 1, 0, 1, 1, 2, 3, 3, 1, 1, 1, 2, 3, 4, 3, 2, 1, 2, 3, 5, 5, 5, 2, 2, 3, 5, 6, 8, 5, 3, 3, 5, 7, 10, 9, 7, 4, 5, 7, 11, 12, 12, 8, 6, 7, 12, 14, 17, 15, 11, 8, 12, 15, 20, 21, 19, 13, 13, 16, 22, 26, 28, 23
Offset: 0

Views

Author

Erich Friedman, Aug 07 2005

Keywords

Examples

			a(45)=3 because we have 45=27+6+6+6=20+13+6+6=13+13+13+6.
		

Crossrefs

Cf. A284105.
Cf. similar sequences of number of partitions of n into parts congruent to m-1 mod m: A000009 (m=2), A035386 (m=3), A035462 (m=4), A109700 (m=5), A109702 (m=6), this sequence (m=7).

Programs

  • Maple
    g:=1/product(1-x^(6+7*j),j=0..20): gser:=series(g,x=0,98): seq(coeff(gser,x,n),n=0..95); # Emeric Deutsch, Apr 14 2006
  • Mathematica
    nmax=100; CoefficientList[Series[Product[1/(1-x^(7*k+6)),{k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 27 2015 *)

Formula

G.f.: 1/product(1-x^(6+7j), j=0..infinity). - Emeric Deutsch, Apr 14 2006
a(n) ~ Gamma(6/7) * exp(Pi*sqrt(2*n/21)) / (2^(27/14) * 3^(3/7) * 7^(1/14) * Pi^(1/7) * n^(13/14)) * (1 - (39*sqrt(3/14)/(7*Pi) + 13*Pi/(168*sqrt(42))) / sqrt(n)). - Vaclav Kotesovec, Feb 27 2015, extended Jan 24 2017
a(n) = (1/n)*Sum_{k=1..n} A284105(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 20 2017

Extensions

Changed offset to 0 and added a(0)=1 by Vaclav Kotesovec, Feb 27 2015

A339087 Number of compositions (ordered partitions) of n into distinct parts congruent to 4 mod 5.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 2, 1, 0, 0, 0, 4, 1, 0, 0, 6, 4, 1, 0, 0, 6, 6, 1, 0, 0, 12, 6, 1, 0, 0, 18, 8, 1, 0, 24, 24, 8, 1, 0, 24, 30, 10, 1, 0, 48, 42, 10, 1, 0, 72, 48, 12, 1, 0, 120, 60, 12, 1, 120, 144, 72, 14, 1, 120, 216, 84, 14, 1, 240
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 23 2020

Keywords

Examples

			a(27) = 6 because we have [14, 9, 4], [14, 4, 9], [9, 14, 4], [9, 4, 14], [4, 14, 9] and [4, 9, 14].
		

Crossrefs

Programs

  • Mathematica
    nmax = 80; CoefficientList[Series[Sum[k! x^(k (5 k + 3)/2)/Product[1 - x^(5 j), {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Sum_{k>=0} k! * x^(k*(5*k + 3)/2) / Product_{j=1..k} (1 - x^(5*j)).

A374076 Expansion of Product_{k>=1} 1 / (1 + x^(5*k-1)).

Original entry on oeis.org

1, 0, 0, 0, -1, 0, 0, 0, 1, -1, 0, 0, -1, 1, -1, 0, 1, -1, 2, -1, -1, 1, -2, 2, 0, -1, 2, -3, 2, 0, -2, 3, -3, 2, 1, -3, 4, -4, 2, 2, -4, 5, -5, 1, 3, -6, 7, -5, 1, 5, -8, 8, -6, -1, 8, -10, 11, -6, -3, 10, -14, 12, -5, -6, 15, -17, 14, -4, -10, 19, -21, 15, -1, -15, 25, -25
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 27 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 75; CoefficientList[Series[Product[1/(1 + x^(5 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = (1/n) Sum[DivisorSum[k, (-1)^(k/#) # &, Mod[#, 5] == 4 &] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 75}]
Showing 1-7 of 7 results.