cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A284099 a(n) = Sum_{d|n, d == 1 (mod 7)} d.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 16, 9, 1, 1, 1, 1, 1, 23, 1, 9, 1, 1, 1, 1, 30, 16, 1, 9, 1, 1, 1, 37, 1, 1, 1, 9, 1, 1, 44, 23, 16, 1, 1, 9, 1, 51, 1, 1, 1, 1, 1, 9, 58, 30, 1, 16, 1, 1, 1, 73, 1, 23, 1, 1, 1, 1, 72, 45, 1, 1, 16, 1, 1, 79, 1, 9, 1, 1
Offset: 1

Views

Author

Seiichi Manyama, Mar 20 2017

Keywords

Crossrefs

Cf. A109703.
Cf. Sum_{d|n, d == 1 (mod k)} d: A000593 (k=2), A078181 (k=3), A050449 (k=4), A284097 (k=5), A284098 (k=6), this sequence (k=7), A284100 (k=8).
Cf. Sum_{d|n, d == k (mod 7)} d: this sequence (k=1), A284443 (k=2), A284444 (k=3), A284445 (k=4), A284446 (k=5), A284105 (k=6).

Programs

  • Mathematica
    Table[Sum[If[Mod[d, 7] == 1, d, 0], {d, Divisors[n]}], {n, 82}] (* Indranil Ghosh, Mar 21 2017 *)
    Table[DivisorSum[n,#&,Mod[#,7]==1&],{n,90}] (* Harvey P. Dale, Aug 08 2021 *)
  • PARI
    for(n=1, 82, print1(sumdiv(n, d, if(Mod(d, 7)==1, d, 0)), ", ")) \\ Indranil Ghosh, Mar 21 2017
    
  • Python
    from sympy import divisors
    def a(n): return sum([d for d in divisors(n) if d%7==1]) # Indranil Ghosh, Mar 21 2017

Formula

G.f.: Sum_{k>=0} (7*k + 1)*x^(7*k+1)/(1 - x^(7*k+1)). - Ilya Gutkovskiy, Mar 21 2017
G.f.: Sum_{n >= 1} x^n*(1 + 6*x^(7*n))/(1 - x^(7*n))^2. - Peter Bala, Dec 19 2021
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/84 = 0.117495... . - Amiram Eldar, Nov 26 2023

A284103 a(n) = Sum_{d|n, d == 4 (mod 5)} d.

Original entry on oeis.org

0, 0, 0, 4, 0, 0, 0, 4, 9, 0, 0, 4, 0, 14, 0, 4, 0, 9, 19, 4, 0, 0, 0, 28, 0, 0, 9, 18, 29, 0, 0, 4, 0, 34, 0, 13, 0, 19, 39, 4, 0, 14, 0, 48, 9, 0, 0, 28, 49, 0, 0, 4, 0, 63, 0, 18, 19, 29, 59, 4, 0, 0, 9, 68, 0, 0, 0, 38, 69, 14, 0, 37, 0, 74, 0, 23, 0, 39, 79
Offset: 1

Views

Author

Seiichi Manyama, Mar 20 2017

Keywords

Crossrefs

Cf. Sum_{d|n, d=k-1 mod k} d: A000593 (k=2), A078182 (k=3), A050452 (k=4), this sequence (k=5), A284104 (k=6), A284105 (k=7).

Programs

  • Mathematica
    Table[Sum[If[Mod[d, 5] == 4, d, 0], {d, Divisors[n]}], {n, 79}] (* Indranil Ghosh, Mar 21 2017 *)
    Table[Total[Select[Divisors[n],Mod[#,5]==4&]],{n,80}] (* Harvey P. Dale, Sep 24 2024 *)
  • PARI
    for(n=1, 79, print1(sumdiv(n, d, if(Mod(d, 5)==4, d, 0)), ", ")) \\ Indranil Ghosh, Mar 21 2017
    
  • Python
    from sympy import divisors
    def a(n): return sum([d for d in divisors(n) if d%5==4]) # Indranil Ghosh, Mar 21 2017

Formula

G.f.: Sum_{k>=1} (5*k - 1)*x^(5*k-1)/(1 - x^(5*k-1)). - Ilya Gutkovskiy, Mar 21 2017
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/60 = 0.164493... (A013661 / 10). - Amiram Eldar, Nov 26 2023

A363808 Number of divisors of n of the form 7*k + 6.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 2, 1, 0, 0, 0, 0, 2, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 2, 1, 0, 0
Offset: 1

Views

Author

Seiichi Manyama, Jun 23 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, Mod[#, 7] == 6 &]; Array[a, 100] (* Amiram Eldar, Jun 23 2023 *)
  • PARI
    a(n) = sumdiv(n, d, d%7==6);

Formula

G.f.: Sum_{k>0} x^(6*k)/(1 - x^(7*k)).
G.f.: Sum_{k>0} x^(7*k-1)/(1 - x^(7*k-1)).
Sum_{k=1..n} a(k) = n*log(n)/7 + c*n + O(n^(1/3)*log(n)), where c = gamma(6,7) - (1 - gamma)/7 = -0.218328..., gamma(6,7) = -(psi(6/7) + log(7))/7 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A284443 a(n) = Sum_{d|n, d == 2 (mod 7)} d.

Original entry on oeis.org

0, 2, 0, 2, 0, 2, 0, 2, 9, 2, 0, 2, 0, 2, 0, 18, 0, 11, 0, 2, 0, 2, 23, 2, 0, 2, 9, 2, 0, 32, 0, 18, 0, 2, 0, 11, 37, 2, 0, 2, 0, 2, 0, 46, 9, 25, 0, 18, 0, 2, 51, 2, 0, 11, 0, 2, 0, 60, 0, 32, 0, 2, 9, 18, 65, 2, 0, 2, 23, 2, 0, 83, 0, 39, 0, 2, 0, 2, 79, 18, 9
Offset: 1

Views

Author

Seiichi Manyama, Mar 27 2017

Keywords

Crossrefs

Cf. A109704.
Cf. Sum_{d|n, d == k (mod 7)} d: A284099 (k=1), this sequence (k=2), A284444 (k=3), A284445 (k=4), A284446 (k=5), A284105 (k=6).

Programs

  • Mathematica
    Table[Sum[If[Mod[d, 7] == 2, d, 0], {d, Divisors[n]}], {n, 80}] (* Indranil Ghosh, Mar 27 2017 *)
  • PARI
    a(n) = sumdiv(n, d, d*((d % 7) == 2)); \\ Amiram Eldar, Nov 26 2023

Formula

G.f.: Sum_{k>=0} (7*k + 2)*x^(7*k+2)/(1 - x^(7*k+2)). - Ilya Gutkovskiy, Mar 28 2017
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/84 = 0.117495... . - Amiram Eldar, Nov 26 2023

A284444 a(n) = Sum_{d|n, d == 3 (mod 7)} d.

Original entry on oeis.org

0, 0, 3, 0, 0, 3, 0, 0, 3, 10, 0, 3, 0, 0, 3, 0, 17, 3, 0, 10, 3, 0, 0, 27, 0, 0, 3, 0, 0, 13, 31, 0, 3, 17, 0, 3, 0, 38, 3, 10, 0, 3, 0, 0, 48, 0, 0, 27, 0, 10, 20, 52, 0, 3, 0, 0, 3, 0, 59, 13, 0, 31, 3, 0, 0, 69, 0, 17, 3, 10, 0, 27, 73, 0, 3, 38, 0, 3, 0, 90, 3
Offset: 1

Views

Author

Seiichi Manyama, Mar 27 2017

Keywords

Crossrefs

Cf. A109705.
Cf. Sum_{d|n, d == k (mod 7)} d: A284099 (k=1), A284443 (k=2), this sequence (k=3), A284445 (k=4), A284446 (k=5), A284105 (k=6).

Programs

  • Mathematica
    Table[Sum[If[Mod[d, 7] == 3, d, 0], {d, Divisors[n]}], {n, 80}] (* Indranil Ghosh, Mar 27 2017 *)
  • PARI
    a(n) = sumdiv(n, d, d*((d % 7) == 3)); \\ Amiram Eldar, Nov 26 2023

Formula

G.f.: Sum_{k>=0} (7*k + 3)*x^(7*k+3)/(1 - x^(7*k+3)). - Ilya Gutkovskiy, Mar 28 2017
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/84 = 0.117495... . - Amiram Eldar, Nov 26 2023

A284445 a(n) = Sum_{d|n, d == 4 (mod 7)} d.

Original entry on oeis.org

0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 11, 4, 0, 0, 0, 4, 0, 18, 0, 4, 0, 11, 0, 4, 25, 0, 0, 4, 0, 0, 0, 36, 11, 0, 0, 22, 0, 0, 39, 4, 0, 0, 0, 15, 0, 46, 0, 4, 0, 25, 0, 4, 53, 18, 11, 4, 0, 0, 0, 64, 0, 0, 0, 36, 0, 11, 67, 4, 0, 0, 0, 22, 0, 74, 25, 4, 11, 39, 0, 4, 81
Offset: 1

Views

Author

Seiichi Manyama, Mar 27 2017

Keywords

Crossrefs

Cf. A109706.
Cf. Sum_{d|n, d == k (mod 7)} d: A284099 (k=1), A284443 (k=2), A284444 (k=3), this sequence (k=4), A284446 (k=5), A284105 (k=6).

Programs

  • Mathematica
    Table[Sum[If[Mod[d, 7] == 4, d, 0], {d, Divisors[n]}], {n, 80}] (* Indranil Ghosh, Mar 27 2017 *)
  • PARI
    a(n) = sumdiv(n, d, d*((d % 7) == 4)); \\ Amiram Eldar, Nov 26 2023

Formula

G.f.: Sum_{k>=0} (7*k + 4)*x^(7*k+4)/(1 - x^(7*k+4)). - Ilya Gutkovskiy, Mar 28 2017
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/84 = 0.117495... . - Amiram Eldar, Nov 26 2023

A284446 a(n) = Sum_{d|n, d == 5 (mod 7)} d.

Original entry on oeis.org

0, 0, 0, 0, 5, 0, 0, 0, 0, 5, 0, 12, 0, 0, 5, 0, 0, 0, 19, 5, 0, 0, 0, 12, 5, 26, 0, 0, 0, 5, 0, 0, 33, 0, 5, 12, 0, 19, 0, 45, 0, 0, 0, 0, 5, 0, 47, 12, 0, 5, 0, 26, 0, 54, 5, 0, 19, 0, 0, 17, 61, 0, 0, 0, 5, 33, 0, 68, 0, 5, 0, 12, 0, 0, 80, 19, 0, 26, 0, 45, 0, 82
Offset: 1

Views

Author

Seiichi Manyama, Mar 27 2017

Keywords

Crossrefs

Cf. A109707.
Cf. Sum_{d|n, d == k (mod 7)} d: A284099 (k=1), A284443 (k=2), A284444 (k=3), A284445 (k=4), this sequence (k=5), A284105 (k=6).

Programs

  • Maple
    f:= n -> convert(select(t -> t mod 7 = 5, numtheory:-divisors(n)),`+`):
    map(f, [$1..1000]); # Robert Israel, Mar 27 2017
  • Mathematica
    Table[DivisorSum[n, # &, Mod[#, 7] == 5 &], {n, 82}] (* Giovanni Resta, Mar 27 2017 *)
  • PARI
    for(n=1, 82, print1(sumdiv(n, d, if(Mod(d, 7)==5, d, 0)), ", ")) \\ Indranil Ghosh, Mar 27 2017

Formula

G.f.: Sum_{k>=0} (5+7k) x^(5+7k)/(1-x^(5+7k)). - Robert Israel, Mar 27 2017
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/84 = 0.117495... . - Amiram Eldar, Nov 26 2023

A109708 Number of partitions of n into parts each equal to 6 mod 7.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 2, 1, 0, 0, 1, 1, 2, 2, 1, 0, 1, 1, 2, 3, 3, 1, 1, 1, 2, 3, 4, 3, 2, 1, 2, 3, 5, 5, 5, 2, 2, 3, 5, 6, 8, 5, 3, 3, 5, 7, 10, 9, 7, 4, 5, 7, 11, 12, 12, 8, 6, 7, 12, 14, 17, 15, 11, 8, 12, 15, 20, 21, 19, 13, 13, 16, 22, 26, 28, 23
Offset: 0

Views

Author

Erich Friedman, Aug 07 2005

Keywords

Examples

			a(45)=3 because we have 45=27+6+6+6=20+13+6+6=13+13+13+6.
		

Crossrefs

Cf. A284105.
Cf. similar sequences of number of partitions of n into parts congruent to m-1 mod m: A000009 (m=2), A035386 (m=3), A035462 (m=4), A109700 (m=5), A109702 (m=6), this sequence (m=7).

Programs

  • Maple
    g:=1/product(1-x^(6+7*j),j=0..20): gser:=series(g,x=0,98): seq(coeff(gser,x,n),n=0..95); # Emeric Deutsch, Apr 14 2006
  • Mathematica
    nmax=100; CoefficientList[Series[Product[1/(1-x^(7*k+6)),{k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 27 2015 *)

Formula

G.f.: 1/product(1-x^(6+7j), j=0..infinity). - Emeric Deutsch, Apr 14 2006
a(n) ~ Gamma(6/7) * exp(Pi*sqrt(2*n/21)) / (2^(27/14) * 3^(3/7) * 7^(1/14) * Pi^(1/7) * n^(13/14)) * (1 - (39*sqrt(3/14)/(7*Pi) + 13*Pi/(168*sqrt(42))) / sqrt(n)). - Vaclav Kotesovec, Feb 27 2015, extended Jan 24 2017
a(n) = (1/n)*Sum_{k=1..n} A284105(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 20 2017

Extensions

Changed offset to 0 and added a(0)=1 by Vaclav Kotesovec, Feb 27 2015

A284104 a(n) = Sum_{d|n, d == 5 (mod 6)} d.

Original entry on oeis.org

0, 0, 0, 0, 5, 0, 0, 0, 0, 5, 11, 0, 0, 0, 5, 0, 17, 0, 0, 5, 0, 11, 23, 0, 5, 0, 0, 0, 29, 5, 0, 0, 11, 17, 40, 0, 0, 0, 0, 5, 41, 0, 0, 11, 5, 23, 47, 0, 0, 5, 17, 0, 53, 0, 16, 0, 0, 29, 59, 5, 0, 0, 0, 0, 70, 11, 0, 17, 23, 40, 71, 0, 0, 0, 5, 0, 88, 0, 0, 5
Offset: 1

Views

Author

Seiichi Manyama, Mar 20 2017

Keywords

Crossrefs

Cf. Sum_{d|n, d=k-1 mod k} d: A000593 (k=2), A078182 (k=3), A050452 (k=4), A284103 (k=5), this sequence (k=6), A284105 (k=7).

Programs

  • Mathematica
    Table[Sum[If[Mod[d, 6] == 5, d, 0], {d, Divisors[n]}], {n, 80}] (* Indranil Ghosh, Mar 21 2017 *)
    Table[Total[Select[Divisors[n],Mod[#,6]==5&]],{n,80}] (* Harvey P. Dale, Dec 30 2017 *)
  • PARI
    for(n=1, 80, print1(sumdiv(n, d, if(Mod(d,6)==5, d, 0)),", ")) \\ Indranil Ghosh, Mar 21 2017
    
  • Python
    from sympy import divisors
    def a(n): return sum([d for d in divisors(n) if d%6==5]) # Indranil Ghosh, Mar 21 2017

Formula

G.f.: Sum_{k>=1} (6*k - 1)*x^(6*k-1)/(1 - x^(6*k-1)). - Ilya Gutkovskiy, Mar 21 2017
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/72 = 0.137077... (A086729). - Amiram Eldar, Nov 26 2023

A284504 Expansion of Product_{k>=0} (1 - x^(7*k+6)) in powers of x.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 2, -1, 0, 0, 0, 0, -1, 2, -1, 0, 0, 0, 0, -1, 3, -1, 0, 0, 0, 0, -2, 3, -1, 0, 0, 0, 0, -3, 4, -1, 0, 0, 0, 1, -4, 4, -1, 0, 0, 0, 1, -5, 5, -1, 0, 0, 0, 2, -7, 5
Offset: 0

Views

Author

Seiichi Manyama, Mar 28 2017

Keywords

Crossrefs

Cf. Product_{k>=0} (1 - x^(7*k+m)): A284499 (m=1), A284500 (m=2), A284501 (m=3), A284502 (m=4), A284503 (m=5), this sequence (m=6).
Cf. A281245.

Programs

  • Mathematica
    CoefficientList[Series[Product[1 - x^(7k + 6), {k, 0, 100}], {x, 0, 100}], x] (* Indranil Ghosh, Mar 28 2017 *)
  • PARI
    Vec(prod(k=0, 100, 1 - x^(7*k + 6)) + O(x^101)) \\ Indranil Ghosh, Mar 28 2017

Formula

a(n) = -(1/n) * Sum_{k=1..n} A284105(k) * a(n-k), a(0) = 1.
Showing 1-10 of 11 results. Next