cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A050464 a(n) = Sum_{d|n, n/d=3 mod 4} d.

Original entry on oeis.org

0, 0, 1, 0, 0, 2, 1, 0, 3, 0, 1, 4, 0, 2, 6, 0, 0, 6, 1, 0, 10, 2, 1, 8, 0, 0, 10, 4, 0, 12, 1, 0, 14, 0, 6, 12, 0, 2, 14, 0, 0, 20, 1, 4, 18, 2, 1, 16, 7, 0, 18, 0, 0, 20, 6, 8, 22, 0, 1, 24, 0, 2, 31, 0, 0, 28, 1, 0, 26, 12, 1, 24, 0, 0, 31, 4, 18, 28, 1, 0, 30, 0, 1
Offset: 1

Views

Author

N. J. A. Sloane, Dec 23 1999

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # &, Mod[n/#, 4] == 3 &]; Array[a, 100] (* Amiram Eldar, Jun 27 2023 *)
  • PARI
    a(n)={sumdiv(n, d, d*(n/d%4==3))} \\ Andrew Howroyd, Sep 13 2019

Formula

G.f.: Sum_{k>=1} k*x^(3*k)/(1 - x^(4*k)). - Ilya Gutkovskiy, Sep 13 2019
G.f.: Sum_{k>0} x^(4*k-1) / (1 - x^(4*k-1))^2. - Seiichi Manyama, Jun 29 2023
from Amiram Eldar, Nov 05 2023: (Start)
a(n) = A002131(n) - A050460(n).
a(n) = A050460(n) - A050469(n).
a(n) = (A002131(n) - A050469(n))/2.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A247037. (End)

Extensions

Offset changed to 1 by Ilya Gutkovskiy, Sep 13 2019

A326400 Expansion of Sum_{k>=1} k * x^(2*k) / (1 - x^(3*k)).

Original entry on oeis.org

0, 1, 0, 2, 1, 3, 0, 5, 0, 7, 1, 6, 0, 8, 3, 10, 1, 9, 0, 15, 0, 13, 1, 15, 5, 14, 0, 16, 1, 21, 0, 21, 3, 19, 8, 18, 0, 20, 0, 35, 1, 24, 0, 27, 9, 25, 1, 30, 0, 36, 3, 28, 1, 27, 16, 40, 0, 31, 1, 45, 0, 32, 0, 42, 14, 39, 0, 39, 3, 56, 1, 45, 0, 38, 15, 40, 8, 42, 0, 71
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 11 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 80; CoefficientList[Series[Sum[k x^(2 k)/(1 - x^(3 k)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, # &, MemberQ[{2}, Mod[n/#, 3]] &], {n, 1, 80}]

Formula

a(n) = Sum_{d|n, n/d==2 (mod 3)} d.
G.f.: Sum_{k>0} x^(3*k-1) / (1 - x^(3*k-1))^2. - Seiichi Manyama, Jun 29 2023

A363897 Expansion of Sum_{k>0} k * x^k / (1 - x^(5*k)).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 7, 8, 9, 10, 12, 14, 13, 14, 15, 17, 17, 21, 19, 20, 22, 24, 23, 28, 25, 27, 27, 28, 29, 35, 32, 34, 36, 34, 35, 43, 37, 38, 39, 40, 42, 51, 43, 48, 45, 47, 47, 59, 49, 50, 52, 54, 53, 63, 60, 57, 57, 58, 59, 70, 62, 64, 66, 68, 65, 84, 67, 68, 69, 70, 72, 86, 73, 74, 75, 77, 84, 94
Offset: 1

Views

Author

Seiichi Manyama, Jun 27 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # &, Mod[n/#, 5] == 1 &]; Array[a, 100] (* Amiram Eldar, Jun 27 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (n/d%5==1)*d);

Formula

a(n) = Sum_{d|n, n/d==1 mod 5} d.
G.f.: Sum_{k>0} x^(5*k-4) / (1 - x^(5*k-4))^2.

A363898 Expansion of Sum_{k>0} k * x^(2*k) / (1 - x^(5*k)).

Original entry on oeis.org

0, 1, 0, 2, 0, 3, 1, 4, 0, 5, 0, 7, 0, 9, 0, 8, 1, 9, 0, 10, 3, 12, 0, 14, 0, 13, 1, 18, 0, 15, 0, 17, 0, 19, 5, 21, 1, 19, 0, 20, 0, 28, 0, 24, 0, 23, 1, 28, 7, 25, 3, 27, 0, 29, 0, 36, 1, 29, 0, 35, 0, 32, 9, 34, 0, 36, 1, 38, 0, 45, 0, 43, 0, 39, 0, 38, 12, 39, 0, 40, 3, 42, 0, 63, 5, 43, 1
Offset: 1

Views

Author

Seiichi Manyama, Jun 27 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # &, Mod[n/#, 5] == 2 &]; Array[a, 100] (* Amiram Eldar, Jun 27 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (n/d%5==2)*d);

Formula

a(n) = Sum_{d|n, n/d==2 mod 5} d.
G.f.: Sum_{k>0} x^(5*k-3) / (1 - x^(5*k-3))^2.

A363899 Expansion of Sum_{k>0} k * x^(3*k) / (1 - x^(5*k)).

Original entry on oeis.org

0, 0, 1, 0, 0, 2, 0, 1, 3, 0, 0, 4, 1, 0, 5, 2, 0, 7, 0, 0, 7, 0, 1, 11, 0, 2, 9, 1, 0, 10, 0, 4, 12, 0, 0, 14, 0, 1, 16, 5, 0, 14, 1, 0, 15, 2, 0, 23, 0, 0, 17, 4, 1, 21, 0, 9, 19, 1, 0, 20, 0, 0, 22, 8, 5, 24, 0, 1, 26, 0, 0, 37, 1, 0, 25, 2, 0, 33, 0, 10, 27, 0, 1, 31, 0, 2, 29, 12, 0
Offset: 1

Views

Author

Seiichi Manyama, Jun 27 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # &, Mod[n/#, 5] == 3 &]; Array[a, 100] (* Amiram Eldar, Jun 27 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (n/d%5==3)*d);

Formula

a(n) = Sum_{d|n, n/d==3 mod 5} d.
G.f.: Sum_{k>0} x^(5*k-2) / (1 - x^(5*k-2))^2.

A364022 Expansion of Sum_{k>0} k * x^(4*k) / (1 + x^(5*k)).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 2, -1, 0, 0, 3, 0, 1, 0, 4, 0, -2, -1, 5, 0, 0, 0, 7, 0, 0, -3, 9, -1, 0, 0, 8, 0, 1, 0, 5, 0, -2, -1, 10, 0, 3, 0, 12, -5, 0, 0, 14, -1, 0, 0, 13, 0, -5, 0, 18, -3, -2, -1, 15, 0, 0, -7, 17, 0, 0, 0, 19, -1, 5, 0, 13, 0, 1, 0, 15, 0, -2, -1, 20, -9, 0, 0, 28, 0, 0, -3, 24, -1, -10, 0
Offset: 1

Views

Author

Seiichi Manyama, Jul 01 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (-1)^(n/#) * # &, Mod[n/#, 5] == 4 &]; Array[a, 100] (* Amiram Eldar, Jul 03 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (n/d%5==4)*(-1)^(n/d)*d);

Formula

G.f.: Sum_{k>0} (-1)^(k-1) * x^(5*k-1) / (1 - x^(5*k-1))^2.
a(n) = Sum_{d|n, n/d==4 (mod 5)} (-1)^(n/d) * d.
Showing 1-6 of 6 results.