cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A035451 Number of partitions of n into parts congruent to 1 mod 4.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 4, 4, 5, 6, 7, 7, 8, 10, 11, 12, 13, 15, 17, 18, 20, 23, 26, 28, 30, 34, 38, 41, 44, 49, 55, 60, 64, 70, 78, 85, 91, 99, 109, 119, 128, 138, 151, 164, 176, 190, 207, 225, 241, 259, 281, 304, 326, 349, 377, 408, 437, 467, 503, 542, 581
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. similar sequences of number of partitions of n into parts congruent to 1 mod m: A000009 (m=2), A035382 (m=3), this sequence (m=4), A109697 (m=5), A109701 (m=6), A109703 (m=7), A277090 (m=8).

Programs

  • Maple
     g := add(x^(n*(4*n-3))/mul((1-x^(4*k))*(1-x^(4*k-3)), k = 1..n), n = 0..5): gser := series(g,x,101): seq(coeff(gser,x,n), n = 0..100); # Peter Bala, Feb 02 2021
  • Mathematica
    nmax=100; CoefficientList[Series[Product[1/(1-x^(4*k+1)),{k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 26 2015 *)
    nmax = 50; kmax = nmax/4; s = Range[0, kmax]*4 + 1;
    Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Aug 03 2020 *)

Formula

G.f.: 1/Product_{k>=0} (1 - x^(4*k+1)). - Vladeta Jovovic, Nov 22 2002
G.f.: Sum_{n>=0} (x^n / Product_{k=1..n} (1 - x^(4*k))). - Joerg Arndt, Apr 07 2011
G.f.: 1 + Sum_{n>=0} (x^(4*n+1) / Product_{k>=n} (1 - x^(4*k+1))) = 1 + Sum_{n>=0} (x^(4*n+1) / Product_{k=0..n} (1 - x^(4*k+1))). - Joerg Arndt, Apr 08 2011
a(n) ~ Gamma(1/4) * exp(Pi*sqrt(n/6)) / (2^(19/8) * 3^(1/8) * n^(5/8) * Pi^(3/4)) * (1 + (Pi/(96*sqrt(6)) - 5*sqrt(3/2)/(16*Pi)) / sqrt(n)). - Vaclav Kotesovec, Feb 26 2015, extended Jan 24 2017
a(n) = (1/n)*Sum_{k=1..n} A050449(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 20 2017
G.f.: Sum_{n>=0} x^(n*(4*n-3))/Product_{k = 1..n} ( (1-x^(4*k))*(1-x^(4*k-3)) ). (Set z = x and q = x^4 in Mc Laughlin et al., Section 1.3, Entry 7.) - Peter Bala, Feb 02 2021

Extensions

Offset changed by N. J. A. Sloane, Apr 11 2010

A284099 a(n) = Sum_{d|n, d == 1 (mod 7)} d.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 16, 9, 1, 1, 1, 1, 1, 23, 1, 9, 1, 1, 1, 1, 30, 16, 1, 9, 1, 1, 1, 37, 1, 1, 1, 9, 1, 1, 44, 23, 16, 1, 1, 9, 1, 51, 1, 1, 1, 1, 1, 9, 58, 30, 1, 16, 1, 1, 1, 73, 1, 23, 1, 1, 1, 1, 72, 45, 1, 1, 16, 1, 1, 79, 1, 9, 1, 1
Offset: 1

Views

Author

Seiichi Manyama, Mar 20 2017

Keywords

Crossrefs

Cf. A109703.
Cf. Sum_{d|n, d == 1 (mod k)} d: A000593 (k=2), A078181 (k=3), A050449 (k=4), A284097 (k=5), A284098 (k=6), this sequence (k=7), A284100 (k=8).
Cf. Sum_{d|n, d == k (mod 7)} d: this sequence (k=1), A284443 (k=2), A284444 (k=3), A284445 (k=4), A284446 (k=5), A284105 (k=6).

Programs

  • Mathematica
    Table[Sum[If[Mod[d, 7] == 1, d, 0], {d, Divisors[n]}], {n, 82}] (* Indranil Ghosh, Mar 21 2017 *)
    Table[DivisorSum[n,#&,Mod[#,7]==1&],{n,90}] (* Harvey P. Dale, Aug 08 2021 *)
  • PARI
    for(n=1, 82, print1(sumdiv(n, d, if(Mod(d, 7)==1, d, 0)), ", ")) \\ Indranil Ghosh, Mar 21 2017
    
  • Python
    from sympy import divisors
    def a(n): return sum([d for d in divisors(n) if d%7==1]) # Indranil Ghosh, Mar 21 2017

Formula

G.f.: Sum_{k>=0} (7*k + 1)*x^(7*k+1)/(1 - x^(7*k+1)). - Ilya Gutkovskiy, Mar 21 2017
G.f.: Sum_{n >= 1} x^n*(1 + 6*x^(7*n))/(1 - x^(7*n))^2. - Peter Bala, Dec 19 2021
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/84 = 0.117495... . - Amiram Eldar, Nov 26 2023

A280457 Expansion of Product_{k>=0} (1 + x^(7*k+1)).

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 1, 3, 2, 0, 0, 0, 0, 1, 3, 3, 1, 0, 0, 0, 1, 4, 4, 1, 0, 0, 0, 1, 4, 5, 2, 0, 0, 0, 1, 5, 7, 3, 0, 0, 0, 1, 5, 8, 5, 1, 0, 0, 1, 6, 10, 6, 1, 0, 0, 1, 6, 12, 9, 2, 0, 0, 1, 7, 14, 11, 3, 0, 0, 1, 7, 16, 15, 5
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 03 2017

Keywords

Comments

Number of partitions of n into distinct parts congruent to 1 mod 7.

Examples

			a(37) = 3 because we have [36, 1], [29, 8] and [22, 15].
		

Crossrefs

Programs

  • Mathematica
    nmax = 105; CoefficientList[Series[Product[(1 + x^(7 k + 1)), {k, 0, nmax}], {x, 0, nmax}], x]
    nmax = 200; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[If[Mod[k, 7] == 1, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}]; ], {k, 2, nmax}]; poly (* Vaclav Kotesovec, Jan 18 2017 *)

Formula

G.f.: Product_{k>=0} (1 + x^(7*k+1)).
a(n) ~ exp(Pi*sqrt(n)/sqrt(21))/(2*2^(1/7)*21^(1/4)*n^(3/4)) * (1 + (13*Pi/(336*sqrt(21)) - 3*sqrt(21)/(8*Pi)) / sqrt(n)). - Ilya Gutkovskiy, Jan 03 2017, extended by Vaclav Kotesovec, Jan 24 2017

A109697 Number of partitions of n into parts each equal to 1 mod 5.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 5, 6, 7, 7, 7, 8, 10, 11, 12, 12, 13, 15, 17, 18, 19, 20, 23, 26, 28, 29, 31, 34, 38, 41, 43, 45, 50, 55, 60, 63, 66, 71, 79, 85, 90, 94, 101, 110, 120, 127, 133, 141, 153, 165, 176, 184, 195, 210, 227, 241, 254, 267, 286, 307, 327
Offset: 0

Views

Author

Erich Friedman, Aug 07 2005

Keywords

Examples

			a(11)=3 since 11 = 11 = 6+1+1+1+1+1 = 1+1+1+1+1+1+1+1+1+1+1
		

Crossrefs

Cf. similar sequences of number of partitions of n into parts congruent to 1 mod m: A000009 (m=2), A035382 (m=3), A035451 (m=4), this sequence (m=5), A109701 (m=6), A109703 (m=7), A277090 (m=8).

Programs

Formula

G.f.: 1/product(1-x^(1+5j), j=0..infinity). - Emeric Deutsch, Mar 30 2006
a(n) ~ Gamma(1/5) * exp(Pi*sqrt(2*n/15)) / (2^(8/5) * 3^(1/10) * 5^(2/5) * Pi^(4/5) * n^(3/5)) * (1 - (3*sqrt(3/10)/(5*Pi) + Pi/(120*sqrt(30))) / sqrt(n)). - Vaclav Kotesovec, Feb 27 2015, extended Jan 24 2017
a(n) = (1/n)*Sum_{k=1..n} A284097(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 20 2017
G.f.: Sum_{k>=0} x^k / Product_{j=1..k} (1 - x^(5*j)). - Ilya Gutkovskiy, Jul 17 2019

Extensions

More terms from Emeric Deutsch, Mar 30 2006

A109701 Number of partitions of n into parts each equal to 1 mod 6.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 5, 6, 7, 7, 7, 7, 8, 10, 11, 12, 12, 12, 13, 15, 17, 18, 19, 19, 20, 23, 26, 28, 29, 30, 31, 34, 38, 41, 43, 44, 46, 50, 55, 60, 63, 65, 67, 72, 79, 85, 90, 93, 96, 102, 111, 120, 127, 132, 136, 143, 154, 166, 176, 183, 189, 198
Offset: 0

Views

Author

Erich Friedman, Aug 07 2005

Keywords

Comments

Euler transform of period 6 sequence [ 1, 0, 0, 0, 0, 0, ...]. - Kevin T. Acres, Apr 28 2018

Examples

			a(10)=2 since 10 = 7+1+1+1 = 1+1+1+1+1+1+1+1+1+1
		

Crossrefs

Cf. A284098.
Cf. similar sequences of number of partitions of n into parts congruent to 1 mod m: A000009 (m=2), A035382 (m=3), A035451 (m=4), A109697 (m=5), this sequence (m=6), A109703 (m=7), A277090 (m=8).

Programs

  • Maple
    g:=1/product(1-x^(1+6*j),j=0..20): gser:=series(g,x=0,77): seq(coeff(gser,x,n),n=0..74); # Emeric Deutsch, Apr 14 2006
  • Mathematica
    nmax=100; CoefficientList[Series[Product[1/(1-x^(6*k+1)),{k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 27 2015 *)

Formula

G.f.: 1/Product_{j >= 0} (1-x^(1+6j)). - Emeric Deutsch, Apr 14 2006
a(n) ~ Gamma(1/6) * exp(Pi*sqrt(n)/3) / (4 * sqrt(3) * Pi^(5/6) * n^(7/12)) * (1 - (7/(24*Pi) + Pi/144) / sqrt(n)). - Vaclav Kotesovec, Feb 27 2015, extended Jan 24 2017
a(n) = (1/n)*Sum_{k=1..n} A284098(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 20 2017
G.f.: Sum_{k>=0} x^k / Product_{j=1..k} (1 - x^(6*j)). - Ilya Gutkovskiy, Jul 17 2019

Extensions

Changed offset to 0 and added a(0)=1 by Vaclav Kotesovec, Feb 27 2015

A277090 Expansion of Product_{k>=0} 1/(1 - x^(8*k+1)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 5, 6, 7, 7, 7, 7, 7, 7, 8, 10, 11, 12, 12, 12, 12, 12, 13, 15, 17, 18, 19, 19, 19, 19, 20, 23, 26, 28, 29, 30, 30, 30, 31, 34, 38, 41, 43, 44, 45, 45, 46, 50, 55, 60, 63, 65, 66, 67, 68, 72, 79, 85, 90, 93, 95, 96, 98, 103, 111, 120, 127, 132, 135, 137, 139, 145
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 29 2016

Keywords

Comments

Number of partitions of n into parts congruent to 1 mod 8.
More generally, the ordinary generating function for the number of partitions of n into parts congruent to 1 mod m (for m>0) is Product_{k>=0} 1/(1 - x^(m*k+1)).

Examples

			a(10) = 2, because we have [9, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Cf. similar sequences of number of partitions of n into parts congruent to 1 mod m: A000009 (m=2), A035382 (m=3), A035451 (m=4), A109697 (m=5), A109701 (m=6), A109703 (m=7).

Programs

  • Mathematica
    CoefficientList[Series[QPochhammer[x, x^8]^(-1), {x, 0, 90}], x]

Formula

G.f.: Product_{k>=0} 1/(1 - x^(8*k+1)).
a(n) ~ exp((Pi*sqrt(n))/(2*sqrt(3)))*Gamma(1/8)/(4*3^(1/16)*(2*Pi)^(7/8)*n^(9/16)).
a(n) = (1/n)*Sum_{k=1..n} A284100(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 20 2017

A035430 Number of partitions of n into parts 7k+1 or 7k+6.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 5, 6, 7, 8, 8, 9, 10, 12, 14, 16, 17, 19, 20, 23, 26, 30, 33, 37, 39, 43, 47, 53, 59, 66, 71, 77, 83, 92, 101, 113, 123, 134, 144, 156, 169, 187, 204, 223, 240, 259, 278, 303, 329, 360, 389, 420, 449, 485, 522, 567, 613, 663, 710, 763
Offset: 0

Views

Author

Keywords

Comments

Convolution of A109708 and A109703. - Vaclav Kotesovec, Jan 21 2017

Crossrefs

Cf. A284151.

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1/((1 - x^(7k+1))*(1 - x^(7k+6))), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 26 2015 *)

Formula

a(n) ~ exp(2*Pi*sqrt(n/21)) / (4 * 21^(1/4) * sin(Pi/7) * n^(3/4)) * (1 - (3*sqrt(21)/(16*Pi) + 13*Pi/(84*sqrt(21))) / sqrt(n)). - Vaclav Kotesovec, Aug 26 2015, extended Jan 24 2017
a(n) = (1/n)*Sum_{k=1..n} A284151(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 21 2017

Extensions

Prepended a(0)=1 from Vaclav Kotesovec, Jan 23 2017
Showing 1-7 of 7 results.