cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A281459 Expansion of Product_{k>=1} (1 + x^(7*k-1))*(1 + x^(7*k-6)).

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 3, 3, 2, 1, 0, 1, 3, 5, 5, 3, 1, 0, 2, 5, 7, 7, 5, 2, 1, 3, 7, 11, 11, 7, 3, 2, 5, 11, 15, 15, 11, 5, 3, 7, 15, 22, 22, 15, 7, 5, 11, 22, 30, 30, 22, 12, 8, 15, 30, 42, 42, 30, 16, 12, 23, 42, 56
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 22 2017

Keywords

Comments

Convolution of A281245 and A280457.

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 + x^(7*k-1))*(1 + x^(7*k-6)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(sqrt(2*n/21)*Pi) / (2^(5/4)*21^(1/4)*n^(3/4)) * (1 + (13*Pi/(84*sqrt(42)) - 3*sqrt(21/2)/(8*Pi)) / sqrt(n)). - Vaclav Kotesovec, Jan 22 2017, extended Jan 24 2017

A284151 Sum_{d|n, d=1 or 6 mod 7} d.

Original entry on oeis.org

1, 1, 1, 1, 1, 7, 1, 9, 1, 1, 1, 7, 14, 1, 16, 9, 1, 7, 1, 21, 1, 23, 1, 15, 1, 14, 28, 1, 30, 22, 1, 9, 1, 35, 1, 43, 1, 1, 14, 29, 42, 7, 44, 23, 16, 1, 1, 63, 1, 51, 1, 14, 1, 34, 56, 9, 58, 30, 1, 42, 1, 63, 1, 73, 14, 29, 1, 35, 70, 1, 72, 51, 1, 1, 16, 77, 1
Offset: 1

Views

Author

Seiichi Manyama, Mar 21 2017

Keywords

Crossrefs

Cf. Sum_{d|n, d=1 or k-1 mod k} d: A046913 (k=3), A000593 (k=4), A284150 (k=5), A186099 (k=6), this sequence (k=7).

Programs

  • Mathematica
    Table[Sum[If[Mod[d, 7] == 1 || Mod[d, 7]==6, d, 0], {d, Divisors[n]}], {n, 80}] (* Indranil Ghosh, Mar 21 2017 *)
  • PARI
    for(n=1, 80, print1(sumdiv(n, d, if(d%7==1 || d%7==6, d, 0)), ", ")) \\ Indranil Ghosh, Mar 21 2017
    
  • Python
    from sympy import divisors
    def a(n): return sum([d for d in divisors(n) if d%7==1 or d%7 == 6]) # Indranil Ghosh, Mar 21 2017

Formula

a(n) = A284099(n) + A284105(n). - R. J. Mathar, Mar 21 2017
Showing 1-2 of 2 results.