A307978
Expansion of e.g.f. exp((sinh(x) - sin(x))/2).
Original entry on oeis.org
1, 0, 0, 1, 0, 0, 10, 1, 0, 280, 120, 1, 15400, 17160, 2080, 1401401, 3203200, 1290640, 190623040, 775975201, 712150400, 36321556720, 239000886400, 413465452401, 9339501072000, 91625659447400, 266045692290560, 3216459513124001, 42923384190336000, 193108117771690680
Offset: 0
-
nmax = 29; CoefficientList[Series[Exp[(Sinh[x] - Sin[x])/2], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = Sum[Boole[MemberQ[{3}, Mod[k, 4]]] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 29}]
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(exp((sinh(x)-sin(x))/2))) \\ Seiichi Manyama, Mar 17 2022
-
a(n) = if(n==0, 1, sum(k=0, (n-3)\4, binomial(n-1, 4*k+2)*a(n-4*k-3))); \\ Seiichi Manyama, Mar 17 2022
A352429
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/4)} binomial(n,4*k+1) * a(n-4*k-1).
Original entry on oeis.org
1, 1, 2, 6, 24, 121, 732, 5166, 41664, 378001, 3810512, 42253926, 511139904, 6698457481, 94535404992, 1429477706286, 23056267551744, 395120495014561, 7169579673404672, 137321623511274246, 2768602189953629184, 58609968225266985241, 1299827736206335767552, 30137364376923272989806
Offset: 0
-
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, 4 k + 1] a[n - 4 k - 1], {k, 0, Floor[(n - 1)/4]}]; Table[a[n], {n, 0, 23}]
nmax = 23; CoefficientList[Series[1/(1 - Sum[x^(4 k + 1)/(4 k + 1)!, {k, 0, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=0, N\4, x^(4*k+1)/(4*k+1)!)))) \\ Seiichi Manyama, Mar 23 2022
A333882
Expansion of e.g.f. exp(Sum_{k>=0} x^(5*k + 1) / (5*k + 1)!).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 8, 29, 85, 211, 464, 1399, 7801, 45410, 216581, 853218, 2896002, 11708734, 79817500, 615700986, 4012571831, 21538473686, 98707812691, 501634082800, 3983368886226, 37404203343457, 305886831698593, 2069143637726674, 11924094649669375
Offset: 0
-
nmax = 29; CoefficientList[Series[Exp[Sum[x^(5 k + 1)/(5 k + 1)!, {k, 0, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = Sum[Boole[MemberQ[{1}, Mod[k, 5]]] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 29}]
nmax = 30; CoefficientList[Series[Exp[x*HypergeometricPFQ[{}, {2/5, 3/5, 4/5, 6/5}, x^5/3125]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Apr 15 2020 *)
A013025
Expansion of e.g.f. exp(sinh(x) + sin(x)).
Original entry on oeis.org
1, 2, 4, 8, 16, 34, 88, 296, 1152, 4546, 17696, 72712, 343424, 1843170, 10274688, 56506024, 315332608, 1910439298, 12815815168, 90064672520, 629185325056, 4400756254114, 32422278027264, 258933905154856, 2168521319694336
Offset: 0
Patrick Demichel (patrick.demichel(AT)hp.com)
1+2*x+4/2!*x^2+8/3!*x^3+16/4!*x^4+34/5!*x^5...
-
With[{nn=30},CoefficientList[Series[Exp[Sinh[x]+Sin[x]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Oct 17 2011 *)
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(sin(x)+sinh(x)))) \\ Seiichi Manyama, Mar 17 2022
-
a(n) = if(n==0, 1, 2*sum(k=0, (n-1)\4, binomial(n-1, 4*k)*a(n-4*k-1))); \\ Seiichi Manyama, Mar 17 2022
A333881
Expansion of e.g.f. exp(Sum_{k>=0} x^(3*k + 1) / (3*k + 1)!).
Original entry on oeis.org
1, 1, 1, 1, 2, 6, 16, 37, 114, 478, 1907, 6777, 28414, 148579, 758916, 3580189, 18981485, 117883917, 720627553, 4193077474, 26795418840, 191751387094, 1352954503595, 9301704998742, 69285817230370, 559142785301527, 4453089770243547, 35182348161102172
Offset: 0
-
nmax = 27; CoefficientList[Series[Exp[Sum[x^(3 k + 1)/(3 k + 1)!, {k, 0, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = Sum[Boole[MemberQ[{1}, Mod[k, 3]]] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 27}]
nmax = 30; CoefficientList[Series[Exp[Exp[x]/3 - 2*Sin[Pi/6 - Sqrt[3]*x/2] / (3*Exp[x/2])], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Apr 15 2020 *)
A307979
Expansion of e.g.f. exp((cosh(x) - cos(x))/2) (even powers only).
Original entry on oeis.org
1, 1, 3, 16, 133, 1576, 24783, 495496, 12245353, 364768576, 12838252443, 526095538816, 24781014246253, 1326767681420416, 80013978835916583, 5392682199766283776, 403287063337529642833, 33261775377836063850496, 3009257393136250807614003, 297176659119237977183973376
Offset: 0
-
nmax = 19; Table[(CoefficientList[Series[Exp[(Cosh[x] - Cos[x])/2], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
a[n_] := a[n] = Sum[Boole[MemberQ[{2}, Mod[k, 4]]] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[2 n], {n, 0, 19}]
A333883
Expansion of e.g.f. exp(Sum_{k>=0} x^(6*k + 1) / (6*k + 1)!).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 9, 37, 121, 331, 793, 1718, 5163, 32281, 217921, 1188709, 5291353, 20031170, 66744741, 267996541, 2030569465, 18368560519, 138812739409, 853152218102, 4409607501927, 19826125988257, 99717123889777, 871344991322017, 9658479225877057
Offset: 0
-
nmax = 30; CoefficientList[Series[Exp[Sum[x^(6 k + 1)/(6 k + 1)!, {k, 0, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = Sum[Boole[MemberQ[{1}, Mod[k, 6]]] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 30}]
nmax = 30; CoefficientList[Series[Exp[x*HypergeometricPFQ[{}, {1/3, 1/2, 2/3, 5/6, 7/6}, x^6/46656]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Apr 15 2020 *)
Showing 1-7 of 7 results.
Comments