A035506 Stolarsky array read by antidiagonals.
1, 2, 4, 3, 6, 7, 5, 10, 11, 9, 8, 16, 18, 15, 12, 13, 26, 29, 24, 19, 14, 21, 42, 47, 39, 31, 23, 17, 34, 68, 76, 63, 50, 37, 28, 20, 55, 110, 123, 102, 81, 60, 45, 32, 22, 89, 178, 199, 165, 131, 97, 73, 52, 36, 25, 144, 288, 322, 267, 212, 157, 118, 84, 58, 40, 27, 233, 466, 521, 432, 343, 254, 191, 136, 94, 65, 44, 30
Offset: 0
Examples
Top left corner of the array is: 1 2 3 5 8 13 21 34 55 4 6 10 16 26 42 68 110 178 7 11 18 29 47 76 123 119 322 9 15 24 39 63 102 165 267 432 12 19 31 50 81 131 212 343 555 14 23 37 60 97 157 254 411 665
References
- C. Kimberling, "Stolarsky interspersions," Ars Combinatoria 39 (1995) 129-138.
Links
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
- Clark Kimberling, Interspersions.
- Clark Kimberling, Interspersions and dispersions, Proceedings of the American Mathematical Society, Vol. 117 (1993), pp. 313-321.
- David R. Morrison, A Stolarsky array of Wythoff pairs, A collection of manuscripts related to the Fibonacci sequence, Santa Clara, CA: Fibonacci Association, 1980, pp. 134-136.
- N. J. A. Sloane, Classic Sequences.
- Eric Weisstein's World of Mathematics, Stolarsky arrays.
- Index entries for sequences that are permutations of the natural numbers
Crossrefs
Programs
-
Maple
A:= proc(n, k) local t, a, b; t:= (1+sqrt(5))/2; a:= floor(n*(t+1)+1 +t/2); b:= round(a*t); (Matrix([[b, a]]). Matrix([[1, 1], [1, 0]])^k) [1, 2] end: seq(seq(A (n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Aug 17 2008
-
Mathematica
(* program generates the dispersion array T of the complement of increasing sequence f[n] *) r = 40; r1 = 12; (* r=# rows of T, r1=# rows to show *) c = 40; c1 = 12; (* c=# cols of T, c1=# cols to show *) x = GoldenRatio; f[n_] := Floor[n*x + 1/2] (* f(n) is complement of column 1 *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* t=Stolarsky array, A035506 *) Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* Stolarsky array as a sequence *) (* Program by Peter J. C. Moses, Jun 01 2011 *) (* Second program: *) A[n_, k_] := Module[{t, a, b}, t = (1+Sqrt[5])/2; a = Floor[n*(t+1)+1+t/2]; b = Round[a*t]; ({b, a}.MatrixPower[{{1, 1}, {1, 0}}, k])[[2]]]; Table[A[n, d-n], {d, 0, 11}, {n, 0, d}] // Flatten (* Jean-François Alcover, Mar 22 2023, after Alois P. Heinz *)
-
PARI
{Stolarsky(r,c)= tau=(1+sqrt(5))/2; a=floor(r*(1+tau)-tau/2); b=round(a*tau); if(c==1,a, if(c==2,b, for(i=1,c-2,d=a+b; a=b; b=d; ); d))} \\ Randall L Rathbun, Jan 25 2002
Formula
T(1,k) = 2*T(0,k+1); T(3,k) = 3*T(0,k+2). - M. F. Hasler, Nov 05 2014
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Sep 27 2000
Extended (terms, Mathematica, example) by Clark Kimberling, Jun 03 2011
Example corrected by M. F. Hasler, Nov 05 2014
Comments