cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035506 Stolarsky array read by antidiagonals.

Original entry on oeis.org

1, 2, 4, 3, 6, 7, 5, 10, 11, 9, 8, 16, 18, 15, 12, 13, 26, 29, 24, 19, 14, 21, 42, 47, 39, 31, 23, 17, 34, 68, 76, 63, 50, 37, 28, 20, 55, 110, 123, 102, 81, 60, 45, 32, 22, 89, 178, 199, 165, 131, 97, 73, 52, 36, 25, 144, 288, 322, 267, 212, 157, 118, 84, 58, 40, 27, 233, 466, 521, 432, 343, 254, 191, 136, 94, 65, 44, 30
Offset: 0

Views

Author

Keywords

Comments

Inverse of sequence A064357 considered as a permutation of the positive integers. - Howard A. Landman, Sep 25 2001
The PARI/GP script gives a general solution for the Stolarsky array in square array form by row, column. Increase the default precision to compute large values in the array. - Randall L Rathbun, Jan 25 2002
The Stolarsky array is the dispersion of the sequence s given by s(n)=(integer nearest n*x), where x=(golden ratio). For a discussion of dispersions, see A191426.
See A098861 for the row in which is a given number. - M. F. Hasler, Nov 05 2014
Named after the American mathematician Kenneth Barry Stolarsky. - Amiram Eldar, Jun 11 2021

Examples

			Top left corner of the array is:
   1    2    3    5    8   13   21   34   55
   4    6   10   16   26   42   68  110  178
   7   11   18   29   47   76  123  119  322
   9   15   24   39   63  102  165  267  432
  12   19   31   50   81  131  212  343  555
  14   23   37   60   97  157  254  411  665
		

References

  • C. Kimberling, "Stolarsky interspersions," Ars Combinatoria 39 (1995) 129-138.

Crossrefs

Cf. A035513 (Wythoff array), A035507 (inverse Stolarsky array), A191426.
Main diagonal gives A035489.

Programs

  • Maple
    A:= proc(n, k) local t, a, b; t:= (1+sqrt(5))/2; a:= floor(n*(t+1)+1 +t/2); b:= round(a*t); (Matrix([[b, a]]). Matrix([[1, 1], [1, 0]])^k) [1, 2] end: seq(seq(A (n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Aug 17 2008
  • Mathematica
    (* program generates the dispersion array T of the complement of increasing sequence f[n] *)
    r = 40; r1 = 12; (* r=# rows of T, r1=# rows to show *)
    c = 40; c1 = 12; (* c=# cols of T, c1=# cols to show *)
    x = GoldenRatio; f[n_] := Floor[n*x + 1/2]
    (* f(n) is complement of column 1 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]]
    (* t=Stolarsky array, A035506 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]]
    (* Stolarsky array as a sequence *)
    (* Program by Peter J. C. Moses, Jun 01 2011 *)
    (* Second program: *)
    A[n_, k_] := Module[{t, a, b}, t = (1+Sqrt[5])/2; a = Floor[n*(t+1)+1+t/2]; b = Round[a*t]; ({b, a}.MatrixPower[{{1, 1}, {1, 0}}, k])[[2]]];
    Table[A[n, d-n], {d, 0, 11}, {n, 0, d}] // Flatten (* Jean-François Alcover, Mar 22 2023, after Alois P. Heinz *)
  • PARI
    {Stolarsky(r,c)= tau=(1+sqrt(5))/2; a=floor(r*(1+tau)-tau/2); b=round(a*tau); if(c==1,a, if(c==2,b, for(i=1,c-2,d=a+b; a=b; b=d; ); d))} \\ Randall L Rathbun, Jan 25 2002

Formula

T(1,k) = 2*T(0,k+1); T(3,k) = 3*T(0,k+2). - M. F. Hasler, Nov 05 2014

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Sep 27 2000
Extended (terms, Mathematica, example) by Clark Kimberling, Jun 03 2011
Example corrected by M. F. Hasler, Nov 05 2014