A297111 Möbius transform of A005187, where A005187(n) = 2n - (number of 1's in binary representation of n).
1, 2, 3, 4, 7, 4, 10, 8, 12, 8, 18, 8, 22, 12, 15, 16, 31, 12, 34, 16, 25, 20, 41, 16, 39, 24, 34, 24, 53, 16, 56, 32, 42, 32, 49, 24, 70, 36, 48, 32, 78, 24, 81, 40, 48, 44, 88, 32, 84, 40, 63, 48, 101, 36, 79, 48, 72, 56, 112, 32, 116, 60, 69, 64, 98, 40, 130, 64, 90, 48, 137, 48, 142, 72, 81, 72, 121, 48, 152, 64
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Crossrefs
Programs
-
Mathematica
Table[DivisorSum[n, IntegerExponent[(2 #)!, 2] MoebiusMu[n/#] &], {n, 80}] (* Michael De Vlieger, Mar 10 2018 *)
-
PARI
A005187(n) = { my(s=n); while(n>>=1, s+=n); s; }; A297111(n) = sumdiv(n,d,moebius(n/d)*A005187(d));
Formula
a(n) = n + A297114(n).
From Antti Karttunen, Mar 11 2018: (Start)
Sum A005187(n) x^n = Sum a(n)*x^n/(1-x^n). [Another way of saying that this is the Möbius transform of A005187. This was originally included in A035532 by mistake.]
(End)
Comments