cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035601 Number of points of L1 norm 7 in cubic lattice Z^n.

Original entry on oeis.org

0, 2, 28, 198, 952, 3530, 10836, 28814, 68464, 148626, 299660, 568150, 1022760, 1761370, 2919620, 4680990, 7288544, 11058466, 16395516, 23810534, 33940120, 47568618, 65652532, 89347502, 120037968, 159369650, 209284972
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [( 8*n^6 +4*5*7*n^4 +8*7*7*n^2 +2*5*9 )*n/(5*7*9): n in [0..30]]; // Vincenzo Librandi, Apr 23 2012
  • Maple
    f := proc(d,m) local i; sum( 2^i*binomial(d,i)*binomial(m-1,i-1),i=1..min(d,m)); end; # n=dimension, m=norm
  • Mathematica
    CoefficientList[Series[2*x*(1+x)^6/(1-x)^8,{x,0,30}],x] (* Vincenzo Librandi, Apr 23 2012 *)
  • PARI
    (8*n^7+140*n^5+392*n^3+90*n)/315 \\ Charles R Greathouse IV, Dec 07 2011
    

Formula

a(n) = (8*n^6 + 4*5*7*n^4 + 8*7*7*n^2 + 2*5*9)*n/(5*7*9). - Frank Ellermann, Mar 16 2002
G.f.: 2*x*(1+x)^6/(1-x)^8. - Colin Barker, Apr 15 2012
a(n) = 2*A099193(n). - R. J. Mathar, Dec 10 2013