A035623 Number of partitions of n into parts 4k and 4k+3 with at least one part of each type.
0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 3, 0, 1, 3, 6, 1, 3, 7, 12, 3, 7, 15, 21, 7, 16, 28, 36, 16, 31, 50, 60, 32, 57, 85, 98, 60, 100, 141, 157, 107, 169, 226, 248, 184, 276, 358, 385, 305, 442, 553, 591, 495, 691, 845, 896, 782, 1063, 1270, 1343, 1216, 1608, 1890, 1993
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 100: P:= (-1 + 1/mul(1-x^(4*k+3), k=0..(N-3)/4))*(-1 + 1/mul(1-x^(4*k), k=1..N/4)): S:= series(P,x,N+1): seq(coeff(S,x,j),j=1..N); # Robert Israel, Feb 23 2016
-
Mathematica
nmax = 63; s1 = Range[1, nmax/4]*4; s2 = Range[0, nmax/4]*4 + 3; Table[Count[IntegerPartitions[n, All, s1~Join~s2], x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* Robert Price, Aug 06 2020 *) nmax = 63; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(4 k + 3)), {k, 0, nmax}])*(-1 + 1/Product[(1 - x^(4 k)), {k, 1, nmax}]), {x, 0, nmax}], x] (* Robert Price, Aug 06 2020 *)
Formula
G.f.: (-1 + 1/Product_{k>=0} (1-x^(4k+3)))*(-1 + 1/Product_{k>=1} (1-x^(4k))). - Robert Israel, Feb 23 2016
a(n) ~ exp(Pi*sqrt(n/3)) * Pi^(3/4) / (2^(5/4) * 3^(5/8) * Gamma(1/4) * n^(9/8)). - Vaclav Kotesovec, May 26 2018