A035625 Number of partitions of n into parts 4k+1 and 4k+3 with at least one part of each type.
0, 0, 0, 1, 1, 1, 2, 4, 4, 5, 7, 10, 12, 14, 18, 24, 28, 33, 41, 50, 59, 70, 84, 100, 117, 137, 161, 188, 219, 254, 295, 341, 393, 453, 520, 595, 682, 780, 889, 1011, 1150, 1307, 1481, 1673, 1893, 2140, 2411, 2713, 3053, 3433, 3851, 4313, 4833, 5411
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000 (first 100 terms from Robert Price)
Programs
-
Mathematica
nmax = 54; s1 = Range[0, nmax/4]*4 + 1; s2 = Range[0, nmax/4]*4 + 3; Table[Count[IntegerPartitions[n, All, s1~Join~s2], x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* Robert Price, Aug 06 2020 *) nmax = 54; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(4 k + 3)), {k, 0, nmax}])*(-1 + 1/Product[(1 - x^(4 k + 1)), {k, 0, nmax}]), {x, 0, nmax}], x] (* Robert Price, Aug 16 2020 *)
Formula
G.f.: (-1 + 1/Product_{k>=0} (1 - x^(4 k + 1)))*(-1 + 1/Product_{k>=0} (1 - x^(4 k + 3))). - Robert Price, Aug 16 2020