A035639 Number of partitions of n into parts 6k and 6k+3 with at least one part of each type.
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 4, 0, 0, 4, 0, 0, 10, 0, 0, 11, 0, 0, 22, 0, 0, 25, 0, 0, 44, 0, 0, 51, 0, 0, 83, 0, 0, 98, 0, 0, 149, 0, 0, 177, 0, 0, 259, 0, 0, 309, 0, 0, 436, 0, 0, 521, 0, 0, 716, 0, 0, 857, 0, 0, 1151, 0, 0, 1376, 0, 0, 1816, 0, 0, 2170, 0, 0, 2818, 0, 0
Offset: 1
Keywords
Links
- Robert Price, Table of n, a(n) for n = 1..999
Programs
-
Mathematica
nmax = 83; s1 = Range[1, nmax/6]*6; s2 = Range[0, nmax/6]*6 + 3; Table[Count[IntegerPartitions[n, All, s1~Join~s2], x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* Robert Price, Aug 12 2020 *) nmax = 83; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(6 k)), {k, 1, nmax}])*(-1 + 1/Product[(1 - x^(6 k + 3)), {k, 0, nmax}]), {x, 0, nmax}], x] (* Robert Price, Aug 12 2020 *)
Formula
G.f. : (-1 + 1/Product_{k>=0} (1 - x^(6 k + 3)))*(-1 + 1/Product_{k>=1} (1 - x^(6 k))). - Robert Price, Aug 12 2020