cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035678 Number of partitions of n into parts 8k and 8k+7 with at least one part of each type.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 3, 0, 0, 0, 0, 0, 1, 3, 6, 0, 0, 0, 0, 1, 3, 7, 11, 0, 0, 0, 1, 3, 7, 14, 18, 0, 0, 1, 3, 7, 15, 25, 29, 0, 1, 3, 7, 15, 28, 43, 44, 1, 3, 7, 15, 29, 50, 69, 67, 3, 7, 15, 29, 53, 84, 110, 99, 7, 15, 29, 54, 91, 138, 168
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    np:= combinat:-numbpart:
    NP:= proc(n,m) if m > n then np(n) else np(n,m) fi end proc;
    f:= proc(n) local r0;
       r0:= (-n) mod 8;
       add(np(s)*add(NP((n-8*s-7*r)/8, r), r=r0 .. floor((n-8*s)/7), 8), s=1..floor((n-1)/8))
    end proc:
    seq(f(n),n=1..100); # Robert Israel, Apr 06 2016
  • Mathematica
    nmax = 86; s1 = Range[1, nmax/8]*8; s2 = Range[0, nmax/8]*8 + 7;
    Table[Count[IntegerPartitions[n, All, s1~Join~s2],
    x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* Robert Price, Aug 13 2020 *)
    nmax = 86; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(8 k)), {k, 1, nmax}])*(-1 + 1/Product[(1 - x^(8 k + 7)), {k, 0, nmax}]), {x, 0, nmax}], x]  (* Robert Price, Aug 13 2020 *)

Formula

G.f.: (-1 + 1/Product_{k>=0} (1 - x^(8*k + 7)))*(-1 + 1/Product_{k>=1} (1 - x^(8*k))). - Robert Price, Aug 13 2020