A035679 Number of partitions of n into parts 8k+1 and 8k+2 with at least one part of each type.
0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 7, 7, 10, 10, 13, 13, 16, 16, 22, 23, 30, 31, 38, 39, 46, 47, 58, 61, 75, 78, 93, 96, 111, 114, 134, 141, 167, 176, 204, 213, 242, 251, 286, 301, 346, 365, 416, 436, 489, 509, 570, 599, 676, 714, 802, 844, 937, 980, 1083, 1138, 1265
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..5000
Programs
-
Maple
b:= proc(n, i, t, s) option remember; `if`(n=0, t*s, `if`(i<1, 0, b(n, i-1, t, s)+(h-> `if`(h in {1, 2}, add(b(n-i*j, i-1, `if`(h=1, 1, t), `if`(h=2, 1, s)), j=1..n/i), 0))(irem(i, 8)))) end: a:= n-> b(n$2, 0$2): seq(a(n), n=1..75); # Alois P. Heinz, Sep 04 2020
-
Mathematica
b[n_, i_, t_, s_] := b[n, i, t, s] = If[n == 0, t s, If[i < 1, 0, b[n, i - 1, t, s] + Function[h, If[h == 1 || h == 2, Sum[b[n - i j, i - 1, If[h == 1, 1, t], If[h == 2, 1, s]], {j, 1, n/i}], 0]][Mod[i, 8]]]]; a[n_] := b[n, n, 0, 0]; Array[a, 75] (* Jean-François Alcover, Oct 31 2020, after Alois P. Heinz *)