cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A243935 Numbers m such that 5 divides A000041(m).

Original entry on oeis.org

4, 7, 9, 14, 18, 19, 23, 24, 27, 29, 34, 38, 39, 44, 49, 54, 58, 59, 61, 64, 66, 68, 69, 71, 74, 79, 82, 84, 89, 94, 97, 99, 103, 104, 109, 114, 119, 120, 124, 127, 128, 129, 130, 134, 136, 139, 140, 142, 144, 149, 154, 159, 163, 164, 165, 169, 170, 173, 174
Offset: 1

Views

Author

Bruno Berselli, Jun 15 2014

Keywords

Crossrefs

Numbers m such that k divides A000041(m), where k is prime: A001560 (k=2), A083214 (k=3), this sequence (k=5), A243936 (k=7), A027827 (k=11), A071750 (k=13). For k composite: A237278 (k=4), A035700 (k=12).

Programs

  • Magma
    [n: n in [1..200] | IsZero(NumberOfPartitions(n) mod 5)];
    
  • Mathematica
    Select[Range[200], Mod[PartitionsP[#], 5] == 0 &]
  • PARI
    is(n)=numbpart(n)%5==0 \\ Charles R Greathouse IV, Apr 08 2015
  • Sage
    # From Peter Luschny in A000041
    @CachedFunction
    def A000041(n):
        if n == 0: return 1
        S = 0; J = n-1; k = 2
        while 0 <= J:
            T = A000041(J)
            S = S+T if is_odd(k//2) else S-T
            J -= k if is_odd(k) else k//2
            k += 1
        return S
    [n for n in (0..200) if mod(A000041(n),5) == 0]
    

A035701 Number of partitions-into-distinct-parts of n is a multiple of 12.

Original entry on oeis.org

11, 27, 38, 41, 46, 49, 58, 59, 68, 79, 81, 110, 121, 128, 135, 142, 150, 159, 163, 165, 167, 171, 180, 181, 182, 193, 195, 202, 205, 206, 209, 211, 219, 221, 223, 231, 234, 240, 258, 268, 269, 277, 279, 284, 292, 296, 310, 313, 316, 319, 322, 327, 336, 339
Offset: 1

Views

Author

Keywords

Crossrefs

A243936 Numbers m such that 7 divides A000041(m).

Original entry on oeis.org

5, 10, 11, 12, 16, 18, 19, 24, 26, 27, 33, 37, 39, 40, 41, 47, 48, 52, 53, 54, 55, 61, 68, 75, 76, 82, 83, 89, 96, 97, 103, 110, 111, 117, 124, 125, 131, 138, 140, 145, 147, 152, 159, 166, 170, 173, 177, 180, 187, 191, 194, 201, 208, 213, 215, 222, 225, 229, 232
Offset: 1

Views

Author

Bruno Berselli, Jun 15 2014

Keywords

Crossrefs

Numbers m such that k divides A000041(m), where k is prime: A001560 (k=2), A083214 (k=3), A243935 (k=5), this sequence (k=7), A027827 (k=11), A071750 (k=13). For k composite: A237278 (k=4), A035700 (k=12).

Programs

  • Magma
    [n: n in [1..250] | IsZero(NumberOfPartitions(n) mod 7)];
    
  • Mathematica
    Select[Range[250], Mod[PartitionsP[#], 7] == 0 &]
  • PARI
    is(n)=numbpart(n)%7==0 \\ Charles R Greathouse IV, Apr 08 2015
  • Sage
    # From Peter Luschny in A000041
    @CachedFunction
    def A000041(n):
        if n == 0: return 1
        S = 0; J = n-1; k = 2
        while 0 <= J:
            T = A000041(J)
            S = S+T if is_odd(k//2) else S-T
            J -= k if is_odd(k) else k//2
            k += 1
        return S
    [n for n in (0..250) if mod(A000041(n),7) == 0]
    

A035702 Numbers k such that the numbers of partitions and partitions-into-distinct-parts of k are both multiples of 12.

Original entry on oeis.org

142, 180, 231, 268, 322, 336, 339, 374, 449, 531, 645, 648, 674, 765, 813, 815, 822, 859, 905, 982, 1182, 1249, 1252, 1380, 1398, 1442, 1478, 1479, 1641, 1668, 1749, 1752, 1914, 1949
Offset: 1

Views

Author

Keywords

Crossrefs

Showing 1-4 of 4 results.