cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A117216 Number of points in the standard root system version of the D_4 lattice having L_infinity norm n.

Original entry on oeis.org

1, 40, 272, 888, 2080, 4040, 6960, 11032, 16448, 23400, 32080, 42680, 55392, 70408, 87920, 108120, 131200, 157352, 186768, 219640, 256160, 296520, 340912, 389528, 442560, 500200, 562640, 630072, 702688, 780680, 864240, 953560, 1048832, 1150248, 1258000, 1372280
Offset: 0

Views

Author

N. J. A. Sloane, Apr 15 2008

Keywords

Comments

This lattice consists of all points (w,x,y,z) where w,x,y,z are integers with an even sum.
The L_infinity norm of a vector is the largest component in absolute value.
Equals binomial transform of [1, 39, 193, 191, 1, -1, 1, -1, 1, ...]. - Gary W. Adamson, Feb 05 2010

References

  • J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, Chap. 4.

Crossrefs

Programs

  • Magma
    I:=[1, 40, 272, 888, 2080]; [n le 5 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 27 2012
  • Mathematica
    CoefficientList[Series[(1+36*x+118*x^2+36*x^3+x^4)/(1-x)^4,{x,0,40}],x]  (* Vincenzo Librandi, Jun 27 2012 *)

Formula

From R. J. Mathar, Feb 03 2010, Feb 13 2010: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), n>4;
a(n) = 8*n*(1+4*n^2) = 2*A144965(n), n>0 (bisection of A035878 and A105374). (End)
G.f.: (1 + 36*x + 118*x^2 + 36*x^3 + x^4)/(1-x)^4. - Colin Barker, May 24 2012
E.g.f.: 1 + 8*x*(1 + 2*x)*(5 + 2*x)*exp(x). - Elmo R. Oliveira, Aug 18 2025

Extensions

a(2) corrected and sequence extended by R. J. Mathar, Feb 03 2010, Feb 13 2010

A035877 Number of points of l_1 norm n in the "diamond" lattice D^+_2, i. e. the rectangular lattice generated by vectors (1, 1) and (-1/2, 1/2).

Original entry on oeis.org

1, 2, 12, 6, 24, 10, 36, 14, 48, 18, 60, 22, 72, 26, 84, 30, 96, 34, 108, 38, 120, 42, 132, 46, 144, 50, 156, 54, 168, 58, 180, 62, 192, 66, 204, 70, 216, 74, 228, 78, 240, 82, 252, 86, 264, 90, 276, 94, 288, 98, 300, 102, 312, 106, 324, 110, 336, 114, 348, 118, 360, 122, 372, 126, 384, 130, 396
Offset: 0

Views

Author

Joan Serra-Sagrista (jserra(AT)ccd.uab.es)

Keywords

Crossrefs

Cf. A035878.

Programs

  • Maple
    A035877 := proc(m) local k,t1; t1 := 2*binomial((2+2*m)/2-1,1); if m mod 2 = 0 then t1 := t1+add(2^k*binomial(2,k)*binomial(m-1,k-1),k=0..2); fi; t1; end;
  • Mathematica
    f[m_, n_] := 2^(n - 1)*Binomial[(n + 2*m)/2 - 1, n - 1] + If[EvenQ[m], 2*n*Hypergeometric2F1[1 - m, 1 - n, 2, 2], 0]; f[0, ] = 1; Table[f[m, 2], {m, 0, 40}] (* _Jean-François Alcover, Apr 18 2013, after Maple *)

Formula

a(n)*a(n+3) = -24 + a(n+1)*a(n+2).
G.f.: (1+2x+10x^2+2x^3+x^4)/(1-x^2)^2 and a(2n)=12n for n>0, a(2n+1)=4n+2.

Extensions

Recomputed by N. J. A. Sloane, Nov 27 1998
Name edited by Andrey Zabolotskiy, Aug 29 2022
Showing 1-2 of 2 results.