cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035937 Number of partitions in parts not of the form 7k, 7k+1 or 7k-1. Also number of partitions with no part of size 1 and differences between parts at distance 2 are greater than 1.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 3, 3, 5, 6, 8, 9, 13, 14, 19, 22, 28, 32, 41, 47, 59, 68, 83, 96, 117, 134, 161, 186, 221, 254, 301, 344, 405, 464, 541, 619, 720, 820, 949, 1081, 1245, 1414, 1624, 1840, 2106, 2384, 2717, 3070, 3492, 3936, 4464, 5026, 5684, 6388, 7210, 8088
Offset: 0

Views

Author

Keywords

Comments

Case k=3, i=1 of Gordon Theorem.

Examples

			G.f. = 1 + x^2 + x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 3*x^7 + 5*x^8 + 6*x^9 + ...
G.f. = q^17 + q^101 + q^143 + 2*q^185 + 2*q^227 + 3*q^269 + 3*q^311 + ...
		

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109.

Crossrefs

Programs

  • Maple
    with (numtheory):
    GordonsTheorem := proc(A, n) local L,M,m,i,s,d;
    L := []; M := []; m := nops(A);
    for i in [$1..n] do
        s := add(d*A[((d-1) mod m) + 1], d = divisors(i));
        L := [op(L), s];
        s := s + add(L[d]*M[i-d], d = [$1..i-1]);
        M := [op(M), s/i];
    od; M end:
    A035937_list := n -> GordonsTheorem([0, 1, 1, 1, 1, 0, 0], n):
    A035937_list(40);  # Peter Luschny, Jan 22 2012
  • Mathematica
    f[max_][a_, b_] := Sum[a^(n*(n+1)/2)*b^(n*(n-1)/2), {n, -max, max}]; a[n_, max_] := a[n, max] = SeriesCoefficient[f[max][-x, -x^6]/f[max][-x, -x^2], {x, 0, n}]; a[n_] := (a[n, 2]; a[n, max = 3]; While[a[n, max] != a[n, max-1], max++]; a[n, max]); Table[a[n], {n, 0, 99}] (* Jean-François Alcover, Jan 13 2014 *)
    a[ n_] := SeriesCoefficient[ 1 / Product[ (1 - x^(7 k - 2)) (1 - x^(7 k - 3)) (1 - x^(7 k - 4)) (1 - x^(7 k - 5)), {k, Ceiling[n/7]}], {x, 0, n}]; (* Michael Somos, Dec 30 2014 *)
    a[ n_] := SeriesCoefficient[ 1 / (QPochhammer[ x^2, x^7] QPochhammer[ x^3, x^7] QPochhammer[ x^4, x^7] QPochhammer[ x^5, x^7] ), {x, 0, n}]; (* Michael Somos, Dec 30 2014 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, polcoeff( 1 / prod( k=1, n, 1 - [0, 0, 1, 1, 1, 1, 0][k%7 + 1] * x^k, 1 + x * O(x^n)), n))}; /* Michael Somos, Dec 30 2014 */
  • Sage
    def GordonsTheorem(A, n) :
        L = []; M = [];
        m = len(A)
        for i in range(n) :
            s = sum(d*A[(d-1) % m] for d in divisors(i+1))
            L.append(s)
            s = s + sum(L[d-1]*M[i-d] for d in (1..i))
            M.append(s/(i+1))
        return M
    def A035937_list(len) :  return GordonsTheorem([0, 1, 1, 1, 1, 0, 0], len)
    A035937_list(40) # Peter Luschny, Jan 22 2012
    

Formula

Expansion of f(-x, -x^6) / f(-x, -x^2) in powers of x where f() is Ramanujan's general theta function.
Euler transform of period 7 sequence [ 0, 1, 1, 1, 1, 0, 0, ...]. - Michael Somos, Dec 30 2014
G.f.: 1 / (Product_{k>0} (1 - x^(7*k - 5)) * (1 - x^(7*k - 4)) * (1 - x^(7*k - 3)) * (1 - x^(7*k - 2))). - Michael Somos, Dec 30 2014 [corrected by Vaclav Kotesovec, Nov 12 2015]
G.f.: (Product_{k>1} (1 - x^k)) * (Sum_{k>0} x^(2*k + 2*k^2) / (Product_{i=1..k} (1 - x^(2*i)) * (1 + x^(2*i)) * (1 + x^(2*i+1)))). - Michael Somos, Dec 31 2014
a(n) ~ 2^(1/4) * sin(Pi/7) * exp(2*Pi*sqrt(2*n/21)) / (3^(1/4) * 7^(3/4) * n^(3/4)). - Vaclav Kotesovec, Nov 12 2015