A035939 Number of partitions of n into parts not of the form 7k, 7k+3 or 7k-3. Also number of partitions such that the differences between parts at distance 2 are greater than 1.
1, 1, 2, 2, 3, 4, 6, 7, 10, 12, 16, 19, 25, 30, 38, 46, 57, 68, 84, 99, 121, 143, 172, 202, 242, 283, 336, 392, 462, 537, 630, 729, 851, 982, 1140, 1312, 1518, 1741, 2006, 2295, 2635, 3007, 3442, 3917, 4470, 5077, 5776, 6545, 7429, 8399, 9510, 10731
Offset: 0
Examples
G.f. = 1 + x + 2*x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 6*x^6 + 7*x^7 + 10*x^8 + ... G.f. = q^-1 + q^41 + 2*q^83 + 2*q^125 + 3*q^167 + 4*q^209 + 6*q^251 + ...
References
- G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Maple
# See A035937 for GordonsTheorem A035939_list := n -> GordonsTheorem([1, 1, 0, 0, 1, 1, 0], n): A035939_list(40); # Peter Luschny, Jan 22 2012
-
Mathematica
a[ n_] := SeriesCoefficient[ 1 / Product[ (1 - x^(7 k - 1)) (1 - x^(7 k - 2)) (1 - x^(7 k - 5)) (1 - x^(7 k - 6)), {k, Ceiling[n/7]}], {x, 0, n}]; (* Michael Somos, Dec 29 2014 *) a[ n_] := SeriesCoefficient[ 1 / (QPochhammer[ x^1, x^7] QPochhammer[ x^2, x^7] QPochhammer[ x^5, x^7] QPochhammer[ x^6, x^7] ), {x, 0, n}]; (* Michael Somos, Dec 29 2014 *)
-
PARI
{a(n) = my(A); if( n<0, 0, polcoeff( 1 / prod( k=1, n, 1 -[0, 1, 1, 0, 0, 1, 1][k%7 + 1] * x^k, 1 + x * O(x^n)), n))}; /* Michael Somos, Dec 29 2014 */
-
Sage
# See A035937 for GordonsTheorem def A035939_list(len) : return GordonsTheorem([1, 1, 0, 0, 1, 1, 0], len) A035939_list(40) # Peter Luschny, Jan 22 2012
Formula
Expansion of f(-x^3, -x^4) / f(-x, -x^2) in powers of x where f() is Ramanujan's two-variable theta function. - Michael Somos, Dec 29 2014
Euler transform of period 7 sequence [ 1, 1, 0, 0, 1, 1, 0, ...].- Michael Somos, Dec 29 2014
G.f.: 1 / (Product_{k>0} (1 - x^(7*k - 6)) * (1 - x^(7*k - 5)) * (1 - x^(7*k - 2)) * (1 - x^(7*k - 1))). - Michael Somos, Dec 29 2014
G.f.: (Product_{k>0} (1 + x^k)) * (Sum_{k>=0} x^(2*k^2) / (Product_{i=1..k} (1 - x^(2*i)) * (1 + x^(2*i-1)) * (1 + x^(2*i)))). - Michael Somos, Dec 31 2014
a(n) ~ 2^(1/4) * cos(Pi/14) * exp(2*Pi*sqrt(2*n/21)) / (3^(1/4) * 7^(3/4) * n^(3/4)). - Vaclav Kotesovec, Nov 13 2015
Extensions
Missing a(0)=1 prepended by Michael Somos, Dec 29 2014
Name simplified by George Beck, Aug 27 2023
Comments