cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035941 Number of partitions of n into parts not of the form 9k, 9k+2 or 9k-2. Also number of partitions with 1 part of size 1 and differences between parts at distance 3 are greater than 1.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 7, 10, 13, 17, 21, 28, 35, 44, 55, 69, 84, 105, 127, 156, 189, 229, 275, 333, 397, 475, 565, 673, 795, 943, 1109, 1307, 1533, 1798, 2099, 2455, 2855, 3323, 3855, 4472, 5169, 5978, 6890, 7942, 9132, 10495, 12032, 13796, 15778, 18040
Offset: 1

Views

Author

Keywords

Comments

Case k=4, i=2 of Gordon Theorem.

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109.

Programs

  • Maple
    # See A035937 for GordonsTheorem
    A035941_list := n -> GordonsTheorem([1, 0, 1, 1, 1, 1, 0, 1, 0], n):
    A035941_list(40); # Peter Luschny, Jan 22 2012
  • Mathematica
    nmax = 60; Rest[CoefficientList[Series[Product[1 / ((1 - x^(9*k-1)) * (1 - x^(9*k-3)) * (1 - x^(9*k-4)) * (1 - x^(9*k-5)) * (1 - x^(9*k-6)) * (1 - x^(9*k-8)) ), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Nov 12 2015 *)
  • Sage
    # See A035937 for GordonsTheorem
    def A035941_list(len) :  return GordonsTheorem([1, 0, 1, 1, 1, 1, 0, 1, 0], len)
    A035941_list(40) # Peter Luschny, Jan 22 2012

Formula

a(n) ~ sin(2*Pi/9) * exp(2*Pi*sqrt(n)/3) / (3*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Nov 12 2015