A035941 Number of partitions of n into parts not of the form 9k, 9k+2 or 9k-2. Also number of partitions with 1 part of size 1 and differences between parts at distance 3 are greater than 1.
1, 1, 2, 3, 4, 6, 7, 10, 13, 17, 21, 28, 35, 44, 55, 69, 84, 105, 127, 156, 189, 229, 275, 333, 397, 475, 565, 673, 795, 943, 1109, 1307, 1533, 1798, 2099, 2455, 2855, 3323, 3855, 4472, 5169, 5978, 6890, 7942, 9132, 10495, 12032, 13796, 15778, 18040
Offset: 1
References
- G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109.
Programs
-
Maple
# See A035937 for GordonsTheorem A035941_list := n -> GordonsTheorem([1, 0, 1, 1, 1, 1, 0, 1, 0], n): A035941_list(40); # Peter Luschny, Jan 22 2012
-
Mathematica
nmax = 60; Rest[CoefficientList[Series[Product[1 / ((1 - x^(9*k-1)) * (1 - x^(9*k-3)) * (1 - x^(9*k-4)) * (1 - x^(9*k-5)) * (1 - x^(9*k-6)) * (1 - x^(9*k-8)) ), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Nov 12 2015 *)
-
Sage
# See A035937 for GordonsTheorem def A035941_list(len) : return GordonsTheorem([1, 0, 1, 1, 1, 1, 0, 1, 0], len) A035941_list(40) # Peter Luschny, Jan 22 2012
Formula
a(n) ~ sin(2*Pi/9) * exp(2*Pi*sqrt(n)/3) / (3*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Nov 12 2015
Comments