A035943 Number of partitions of n into parts not of the form 9k, 9k+4 or 9k-4. Also number of partitions with at most 3 parts of size 1 and differences between parts at distance 3 are greater than 1.
1, 1, 2, 3, 4, 5, 8, 10, 14, 18, 24, 30, 40, 49, 63, 78, 98, 120, 150, 182, 224, 271, 330, 396, 480, 572, 687, 817, 974, 1151, 1367, 1608, 1898, 2226, 2614, 3053, 3573, 4157, 4844, 5620, 6524, 7544, 8731, 10066, 11611, 13353, 15356, 17612, 20203, 23112
Offset: 0
References
- G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
nmax = 60; CoefficientList[Series[Product[1 / ((1 - x^(9*k-1)) * (1 - x^(9*k-2)) * (1 - x^(9*k-3)) * (1 - x^(9*k-6)) * (1 - x^(9*k-7)) * (1 - x^(9*k-8)) ), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 12 2015 *)
Formula
a(n) ~ cos(Pi/18) * exp(2*Pi*sqrt(n)/3) / (3*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Nov 12 2015
Extensions
a(0)=1 prepended by Seiichi Manyama, May 08 2018
Comments